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Abstract
OPENPROP, an open-source computational tool for the
design and analysis of propellers and horizontal-axis turbines,
is extended to provide estimates of normal stresses in the
blades for both on- and off-design operating conditions. The
numerical model is based on propeller lifting theory, and
the present implementation of the code includes an analysis
capability to estimate the off-design performance of the
propeller or turbine and to make blade stress predictions.

As an example, we present the design and performance
of a two-bladed propeller. Experimental measurements of
the propeller performance over a wide range of off-design
operating conditions agree with performance predictions.
Estimates of the blade stress are given for on-design and off-
design operating states of the propeller.

1. INTRODUCTION
OPENPROP is a suite of open-source propeller and

turbine design codes written in the MATLAB programming
language [Kimball and Epps 2010]. The codes are based on
the same propeller design theory utilized in codes employed
by the US Navy for parametric design of marine propellers
[Kerwin 2007]. OPENPROP is designed to be a GUI-based
user-friendly tool that can be used by both propeller design
professionals as well as novices to propeller design.

A team of researchers at MIT, Maine Maritime Academy
and University of Maine have contributed to the current
OPENPROP code. OPENPROP began in 2001 with the
propeller code PVL developed by Kerwin [2007] as part of
his MIT propeller design course notes. The first MATLAB
version of this code, MPVL, incorporated graphical user
interfaces for parametric design and preliminary bladerow
design [Chung 2007]. Geometry routines were later added
which interfaced with the CAD program Rhino to generate a
3D printable propeller [D’Epagnier et. al. 2007]. These early
codes were capable of designing propellers using a simple
Lerb’s criteria optimizer routine [Lerbs 1952]. Epps et. al.
[2009a] implemented a generalized optimizer routine based
on the work of Coney [1989] , and Epps [2010] developed an
off-design performance analysis capability.

OPENPROP utilizes a lifting-line representation of the
blades with constant-diameter helical vortices to represent the

blade wake. The computational model incorporates a standard
wake alignment procedure to accurately represent moderate
blade loading. As such, it can design both propellers and axial
flow turbines using the same numerical representation [Epps
et. al. 2009].

This paper presents an extension of the code to predict
the normal stresses in the blades due to inviscid and
viscous loading. The stress analysis currently implemented
is applicable to propellers or turbines with zero rake or skew,
and extension to the raked or skewed cases is planned. This
paper also presents an example propeller design using the
current code suite. Experimental measurements of the off-
design performance of the propeller are presented for a range
of off-design operating conditions. This experimental data
provides important validation for the off-design performance
analysis capability of OPENPROP. The blade stress estimates
for on- and off-design conditions are also shown.

2. METHODOLOGY
What follows is a review of the theoretical foundation

and numerical implementation of the OPENPROP code
suite, which draws heavily from the theory presented in
[Kerwin 2007, Coney 1989, Carlton 1994]. The present
implementation of OPENPROP is based on moderately-
loaded lifting line theory, in which a propeller blade is
represented by a lifting line, with trailing vorticity aligned to
the local flow velocity (i.e. the vector sum of free-stream plus
induced velocity). The induced velocities are computed using
a vortex lattice, with helical vortex filaments trailing into the
wake at discrete stations along the blade. The blade itself is
modeled as discrete sections, having 2D section properties
at each radius. Loads are computed by integrating the 2D
section loads over the span of the blade. The propeller design
optimization procedure determines the optimum circulation
distribution along the span of the blade, which yields the
minimum torque for a specified thrust, inflow conditions,
and blade 2D section properties. For a selected design, the
blade shape and pitch angle are determined by scaling 2D
section geometry to give the desired on-design loading. The
off-design performance is estimated assuming that the lift
coefficient of each blade section (and hence, the circulation)
is proportional to the local 2D angle of attack, which is
computed using the local induced velocity consistent with the
blade loading at the off-design condition.



2.1. Propeller lifting line representation
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Figure 1. Propeller velocity/force diagram, as viewed from
the tip towards the root of the blade. All velocities are relative
to a stationary blade section at radius r.

The velocity/force diagram shown in figure 1 illustrates the
velocities and forces (per unit span) on a 2D blade section in
the axial ea and tangential et directions for a propeller rotating
with angular velocity ωea. The total resultant inflow velocity,
V∗, has magnitude V ∗ =

√
(Va +u∗a)2 +(ωr+Vt +u∗t )2 and

is oriented at pitch angle,

βi = tan−1
[

Va +u∗a
ωr+Vt +u∗t

]
(1)

to the et axis. Also shown on figure 1 are the angle of attack,
α; blade pitch angle θ = α+ βi; circulation, Γer; (inviscid)
Kutta-Joukowski lift force Fi = ρV ∗Γ normal to V∗ ; and
viscous drag force, Fv =

1
2 ρ(V ∗)2CDc aligned with V∗, where

ρ is the fluid density, CD is the drag coefficient, c is the section
chord. These forces can be projected into axial and tangential
components

Fa = [Fi cosβi−Fv sinβi] (ea) (2)
Ft = [Fi sinβi +Fv cosβi] (−et) (3)

Assuming the Z blades are identical, the total thrust and
torque on the propeller are

T = Z
∫ R

rh

Fa dr (4)

Q = Z
∫ R

rh

(r er)×Ft dr (5)

where rh and R are the radius of the propeller hub and tip,
respectively.

The axial and tangential induced velocities, {u∗a,u∗t } are
computed using the standard propeller lifting line model, in
which the Z propeller blades are each modeled as a set of
M horseshoe vortex elements (which consist of a segment of
the lifting line and two helical trailing vortices that extend to
infinity). Since circulation is assumed constant on each panel,

the influence of the vortex lattice at a given radial location,
rc(m), m = 1 . . .M, is given by

u∗a(rc(m)) =
M

∑
i=1

Γ(i)ū∗a(m, i) (6)

u∗t (rc(m)) =
M

∑
i=1

Γ(i)ū∗t (m, i) (7)

where ū∗a(m, i) and ū∗t (m, i) are the axial and tangential
velocity induced at rc(m) by a unit-strength horseshoe vortex
surrounding the ith panel of each of the Z blades. These
influence matrices are functions of {Z,rc(m),rv(i),βi(i)},
which are computed using the approximations by Wrench
[1957].

2.2. Off-design performance analysis
An off-design (OD) operating state is defined by an off-

design advance coefficient,

JOD =
Vs

nODD
=

πVs

ωODR
, (8)

and state variables {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t }. The
off-design state is found using a modified Newton solver
approach. During each iteration, one Newton solver iteration
is performed to drive the residual vector

R =


V ∗−

√
(Va +u∗a)2 +(ωODrc +Vt +u∗t )2

α− (θ−βi)
CL− (2π(α−αI)+CLI )
Γ−

( 1
2CLV ∗c

)
u∗a− [ū∗a] · [Γ]
u∗t − [ū∗t ] · [Γ]

 (9)

towards zero. Note that the third residual is merely notional,
and a more accurate CL(α) curve is currently employed
in OPENPROP to treat section stall properties [Epps 2010].
Given the new values of {V ∗, α, CL, Γ, u∗a, u∗t }, the parameters
{βi, ū∗a, ū∗t } are then updated. These new values are used in
the next Newton iteration, and so on. This process repeats
until convergence of the entire system. For each operating
state, the analyzer computes the propeller thrust, torque, and
power coefficients and the efficiency [Epps et. al. 2009].

2.3. Blade stress estimation
Given the design state or an off-design state, the blade

stresses may be estimated by an application of beam bending
theory [Kerwin and Hadler 2010]. The basic assumptions
herein are: (1) the blade acts as a cantilevered beam, (2)
normal stresses are due to bending and centrifugal forces, (3)
sheer stresses are negligible, and (4) the blade has zero rake
and skew.
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Figure 2. Bending moments and resultants.

Centrifugal forces contribute to the overall tensile stress at
each blade section. The elemental centrifugal force acting on
a blade section from an adjoining section is dFc = ω2r dm,
where dm = ρbAdr is the mass of the adjoining section, ρb is
the propeller blade material density, and A is the section area.
The total centrifugal force at a section of radius, ro, is the sum
of the contributions of all outboard sections

Fc = ρbω
2
∫ R

ro

Ar dr (er) (10)

which produces tensile stress Fc/A.
Axial and tangential loads contribute to bending stresses

at each blade section. The bending stresses at radius ro are
computed from the bending moments about the negative axial
and tangentail axes, which are as follows:

Ma =
∫ R

ro

(r− ro)Fa dr (−et) (11)

Mt =
∫ R

ro

(r− ro)Ft dr (−ea) (12)

Since the blade is oriented at pitch angle θ to the et axis, the
axial and tangential bending moments are projected onto the
centroidal axes (x parallel to the chord line, and y toward the
suction side), as shown in figure 2

Mx = Ma cosθ+Mt sinθ (−ex) (13)
My = Ma sinθ−Mt cosθ (ey) (14)

Thus, the total normal stress at point (x,y) of the section is:

σ(x,y) =−Mxy
Ix
−

Myx
Iy

+
Fc

A
(15)

where x and y are measured from the centroid of the area of
the section. Equation (15) assumes that the blade does not
have rake or skew, which would introduce additional bending
moments due to Fc.

This procedure is implemented in OPENPROP to estimate
the stress for the on-design loading or any off-design state.
Since the blade stress requires the loading in physical units,
the actual value of Vs or n must be specified, in addition to
the non-dimensional off-design advance coefficient. Further
details of this procedure are given in [Ketcham 2010].

Parameter Value Description
Z 2 number of blades
N 480 [RPM] rotation rate (n = 8 rev/s)
D 0.25 [m] diameter (≈ 10 in)
T 30 [N] required thrust
V s 1.5 [m/s] free-stream speed

Dhub 0.08382 [m] hub diameter (3.3 in)
M 20 number of vortex panels

Table 1. Propeller design input parameters.

3. EXAMPLE: PROPELLER DESIGN AND
STRESS ANALYSIS

A two-bladed propeller was designed for use in this study.
The propeller was designed to operate in the test set-up that
will be described shortly. Performance measurements were
made at the MIT recirculating water tunnel over a range of
off-design operating states. The blade stress was estimated for
both on- and off-design conditions, although measurements
of the stress were not made.

The primary design parameters are listed in table 1, and
their justification follows. The inflow velocity profile was
not measured prior to propeller design and assumed uniform
(Va/Vs = 1 for all blade sections). The swirl inflow velocity
was zero (Vt = 0), and the propeller had zero rake or skew.
The section drag coefficient was assumed to be CD = 0.010
for all blade sections.

The hub diameter (Dhub = 3.3 in) was chosen to match the
diameter of the trolling motor used in the experiments. The
propeller diameter (D = 0.25 m ≈ 10 in) was chosen to be as
large as possible while still leaving sufficient clearance to the
walls of the water tunnel to mitigate blockage effects. The
choice of two blades (Z = 2) was driven by the size of the
Dimension Elite 3D printer used to fabricate the propeller,
which has an 8-inch by 12-inch planform area for printing.
Thus, a two-bladed propeller could be printed with a 10-
inch diameter, whereas a propeller with three or more blades
would be restricted to maximum a diameter of 8 inches. The
free-stream speed and thrust were chosen to give a thrust
coefficient typical of a marine propeller (see table 2) while
having low enough torque that the trolling motor could drive
the propeller.

The propeller circulation distribution was optimized in
OPENPROP using the [Coney 1989] method, and the non-
dimensional design performance of this optimized propeller
is shown in table 2. The values for KT and Js meet those
prescribed by the input parameters, and the torque coefficient
and efficiency are typical for this loading. Tabulated flow
parameters for blade sections at the control points are given
in table 3.

The blade shape was chosen to give a reasonably large
chords for most of the span, while also maintaining a rounded



Js =
Vs
nD 0.75 advance ratio

KT = T
ρn2D4 0.1200 thrust coefficient

KQ = Q
ρn2D5 0.0204 torque coefficient

EFFY = TVs
Qω

0.7019 efficiency
Table 2. Design performance parameters.

r/R G c
D

f0
c

t0
c θ

0.3517 0.0464 0.2411 0.0453 0.1449 41.6029
0.3845 0.0467 0.2494 0.0414 0.1351 38.9058
0.4173 0.0473 0.2571 0.0383 0.1261 36.5226
0.4502 0.0479 0.2646 0.0356 0.1179 34.4033
0.4830 0.0484 0.2713 0.0332 0.1103 32.5101
0.5158 0.0487 0.2769 0.0310 0.1035 30.8108
0.5486 0.0489 0.2822 0.0291 0.0972 29.2759
0.5815 0.0489 0.2864 0.0272 0.0914 27.8841
0.6143 0.0486 0.2886 0.0256 0.0862 26.6175
0.6471 0.0481 0.2901 0.0241 0.0813 25.4575
0.6799 0.0473 0.2911 0.0226 0.0768 24.3908
0.7128 0.0463 0.2911 0.0212 0.0726 23.4068
0.7456 0.0449 0.2889 0.0199 0.0686 22.4980
0.7784 0.0431 0.2849 0.0186 0.0650 21.6553
0.8113 0.0409 0.2795 0.0173 0.0619 20.8710
0.8441 0.0381 0.2692 0.0162 0.0592 20.1432
0.8769 0.0348 0.2539 0.0151 0.0567 19.4651
0.9097 0.0305 0.2348 0.0138 0.0543 18.8277
0.9426 0.0250 0.2052 0.0125 0.0519 18.2297
0.9754 0.0171 0.1470 0.0115 0.0541 17.6748

Table 3. Optimized blade design: radius/propeller radius,
r/R; non-dimensional circulation, G= Γ

2πRVs
; chord/diameter,

c
D ; camber ratio, f0

c ; and thickness ratio, t0
c ; and blade pitch

angle, θ [deg]. The chord lengths were not optimized.

blade tip. Large chord lengths enable large blade thickness
(required so the blade would not flex during testing) while
still having small thickness to chord ratio (required for linear
foil theory). The 2D foil section thickness profile was a
version of the ‘NACA 65A010’ thickness form ]Abbott and
von Doenhoff, 1959, p. 369], which was modified slightly to
be amenable to 3D printing. The ‘NACA 65A010’ and ‘NACA
65A010 (modified)’ forms are shown in figure 3. The modified
shape was obtained by truncating and rounding the trailing
edge and then stretching the aft half of the blade section to be
the original length. Further details of the design are given in
[Epps 2010].

The 3D blade geometry was built from 2D sections,
as described in [Epps 2009a]. The geometry of each 2D
section is defined by the meanline camber profile and
thickness forms. The meanline selected was the ‘NACA a=0.8
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Figure 3. Blade thickness form: ‘NACA65A010’ versus
‘NACA65A010 (modified)’.

Figure 4. Rendering of the propeller blades: (a) OPENPROP,
(b) SolidWorks.
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Figure 5. Propeller test setup: power is delivered to and
Hall-effect signal is acquired from the motor assembly by
umbilical. The data acquisition system triggers the power
supply and PIV camera to start the unsteady start-up tests.

(modified)’ meanline type [Abbott and von Doenhoff, 1959,
p. 403]. This meanline type has an ideal lift coefficient of
C̃LI = 1.0 and an ideal angle of attack of α̃I = 1.40 with a
maximum camber ratio of f̃0/c= 0.06651. The actual camber
and ideal angle of attack of the sections was scaled by the
desired section lift coefficient. The resulting 2D and 3D blade
geometry is shown in figure 4.

3.1. Experimental results
Steady propeller performance tests were performed in the

MIT water tunnel using the experimental setup shown in
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Figure 6. Off-design propeller performance curves, with
experimental data. The design point is Js = 0.75.

figure 5. The propeller was mounted on a trolling motor
(Minn Kota motor assembly, part number 2069060) and
situated in the water tunnel test section. Thrust and torque
measurements were made for a range of steady flow speeds
(Vs = 0.1 to 1.9 m/s) and steady rotation rates (n = 1.4 to
9.5 rev/s), spanning the advance ratios (Js = 0.3 to 1.1). In
these experiments, the flow speed was measured using the
a laser Doppler velocimetry (LDV) system, and the drag
on the motor housing, Fmotor drag(Vs), was inferred from the
calibration data [Epps 2010]. The net force on the motor
assembly was measured using the force dynamometer, so the
thrust produced by the propeller was

T = k f fnet force +Fmotor drag(Vs) (16)

where k f = 93.3 [N/V] was the calibration.
The torque on the propeller was inferred from

measurements of the current supplied to the motor, im,
and of the angular velocity of the propeller

Q = kmim−B(ω) (17)

where km = 0.06454 Nm/A, as determined by calibration
tests. The steady rotation rate, ω, is the slope of a linear fit to
the angular-position-versus-time data acquired from a Hall-
effect sensor mounted to the motor assembly, and the friction
torque, B(ω), was inferred from calibration data [Epps 2010].
These data are normalized in the usual way to form thrust and
torque coefficients

KT =
T

ρn2D4
p

(18)

KQ =
Q

ρn2D5
p

(19)

where Dp = 0.2487m is the actual diameter of the printed
propeller. The efficiency of the propeller is by definition

EFFY =
TVs

Qω
=

KT Js

2πKQ
(20)

In figure 6, these data are plotted versus advance coefficient

Js =
Vs

nDp
(21)

Figure 6 shows good agreement between the OPENPROP
off-design performance predictions and the experimental
results. The measured data match within 10% of the predicted
performance for most advance ratios. These data provide
valuable validation for the off-design performance analysis
method.

3.2. Blade stresses
Since the performance predictions made by the off-design

analysis model agree reasonably well with the measured
performance data, these model predictions can be used to
estimate the blade stresses. Blade normal stresses were
estimated using the procedure outlined in Section 2.3. for the
design state, as well as an off-design operating state, with
Vs = 1.5 m/s, n = 15 rev/s, which corresponds to Js = 0.40.

In figures 7 and 8, typical sign conventions for normal
stress apply: tensile stresses are considered positive and
compressive stresses negative. As expected, the off-design
condition chosen shows higher stresses than the on-design
condition. This is a result of (1) selecting an off-design design
advance ratio where both KT and KQ are higher than on-
design; and (2) achieving that off-design advance ratio with a
higher rotation rate. (Had we chosen Js = 0.40 with Vs = 0.8
m/s and n = 8 rev/s, then the stresses would be lower.)

Figure 7. Blade stress for the on-design state: Js = 0.75,
Vs = 1.5 m/s, n = 8 rev/s, D = 0.25 m.

The stress estimates presented herein agree with the trends
presented by Carlton [1994] for a symmetrical propeller blade
without skew. Carlton [1994] presents isostress contour lines
taken from FEA results, showing highest stress near the blade
mid-chord in a region that extends close to the tip of the blade
and a decreasing stress as one moves away from the mid-
chord to the leading and trailing edges.



Figure 8. Blade stress for an off-design state: Js = 0.40, Vs =
1.5 m/s, n = 15 rev/s, D = 0.25 m.

4. CURRENT RESEARCH FOCUS
Efforts are currently underway to extend the simple

stress analysis presented herein to model large, flexible
wind turbines. In the case of flexible blades, the vortex
lattice will have to be augmented as to find the deflected
state of the turbine, since blade flexure corresponds to a
change in the geometry of the vortex lattice. This introduces
12 unknowns into the Newton solver, namely the (each
3-component) position, orientation, elemental forces, and
elemental moments of each blade section. Also, for a large,
flexible propeller or turbine, bending stresses due to rake and
skew will have to properly be accounted for in the overall
stress state of the blade.

One related study is of interest as well. The standard
propeller lifting line model places the lifting line at the
mid-chord and places the control points on the lifting itself.
This offers computational efficiency, since the [Wrench 1957]
formulae can be used to compute the induced velocities on
the radial lifting line. One study of interest is to augment
the vortex lattice such that the lifting line traces the quarter-
chord of the blade sections and the control points are located
at the three-quarter-chord positions, which is the standard
model consistent with thin airfoil theory for flat-unswept
wings. Comparison of performance predictions between the
two vortex lattice geometries are of interest.

The OPENPROP project is intended to provide accurate
and powerful propeller and axial flow turbine design codes
for use by both novice users and experienced designers. The
open-source nature of the code suite (published under the
GNU public license protocol) is intended to make it a public
resource to enhance the art of propeller and turbine design
and analysis.

Acknowledgments This work is supported by the Office
of Naval Research N000140810080 and NOAA NSG
NA060AR4170019. In addition, the authors wish to thank
Mr. Robert Damus of the Project Ocean, who was
instrumental in securing funds that made some of this
research possible.

REFERENCE

Abbott, I. H., and Von Doenhoff, A. E. Theory of Wing
Sections. Dover, 1959.

Carlton, J. S. Marine Propellers and Propulsion.
Butterworth-Heinemann, 1994.

Chung, H.-L. “An enhanced propeller design program based
on propeller vortex lattice lifting line theory”. M.S.
thesis, MIT, 2007.

Coney, W.B. “A Method for the Design of a Class of
Optimum Marine Propulsors”. PhD thesis, MIT, 1989.

Drela, M. “XFOIL: An Analysis and Design System for Low
Reynolds Number Airfoils.” In: T.J. Mueller, editor. Low
Reynolds Number Aerodynamics: Proceedings for the
Conference, Notre Dame, Indiana, USA, 5-7 June 1989.
Springer-Verlag, p. 1-12.

Epps, B.; Stanway, J.; and Kimball, R. “OPENPROP: An
Open-Source Design Tool for Propellers and Turbines,”
SNAME Propeller and Shafting conference, 2009.

Epps, B.; Chalfant, J.; Kimball, R.; Techet, A.; Flood, K.;
and Chryssostomidis, C., “OpenProp: An Open-source
Parametric Design and Analysis Tool for Propellers,”
Proc. Grand Challenges in Modeling and Simulation
(GCMS09), Istanbul, Turkey. July 13-16, 2009a.

Epps, B.P., “An Impulse Framework for Hydrodynamic
Force Analysis: Fish Propulsion, Water Entry of
Spheres, and Marine Propellers,” Ph.D. Thesis, MIT,
February 2010.

Kerwin, J.E. Hydrofoils and Propellers. MIT course 2.23
notes, 2007.

Kerwin, J.E. and Hadler, J.B., “Principles of Naval
Architecture: Propulsion,” SNAME, to appear 2010.

Ketcham, J. “Design, build and test of an axial flow,
hydrokinetic turbine with fatigue analysis,” Masters
Thesis, MIT, May 2010.

Kimball, R.W. and Epps, B.P. OPENPROP v2.3 code,
http://openprop.mit.edu, 2010.

Lerbs, H.W. “Moderately Loaded Propellers with a Finite
Number of Blades and an Arbitrary Distribution of
Circulation.” Trans. SNAME, v. 60, 1952.

Peterson, C.J. “Minimum Pressure Envelope Cavitation
Analysis Using Two-Dimensional Panel Method” M.S.
Thesis, MIT, June 2008.

Wrench, J. W. “The calculation of propeller induction
factors.” Technical Report 1116, David Taylor Model
Basin, February, 1957.

http://openprop.mit.edu

	Introduction
	Methodology
	Propeller lifting line representation
	Off-design performance analysis
	Blade stress estimation

	Example: propeller design and stress analysis
	Experimental results
	Blade stresses

	Current research focus

