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Abstract
This article comments on the wake model used

in moderately-loaded rotor lifting line theory for the
preliminary design of propellers and horizontal-axis
turbines. Mathematical analysis of the classical wake
model reveals an inconsistency between the induced
velocities numerically computed by the model versus
those theoretically predicted by the model. An improved
wake model is presented, which better agrees with theory
than previous models and thus improves the numerical
consistency and robustness of rotor lifting line design
algorithms. The present wake model analytically relates
the pitch of the trailing vortices to the pitch of the
total inflow computed at the lifting line control points.
For conciseness, the article focuses on the propeller
case, although both propeller and horizontal-axis turbine
examples are presented.

1 Introduction
Broadly speaking, methods for propeller design may

be classified into two categories: searching methods or
mathematical optimization methods. Searching methods
attempt to find an optimized propeller geometry
through trial and error. Typically, the propeller
geometry is parameterized by the pitch, camber, and
chord distributions, which are varied in either a
systematic or random fashion to explore the design
space. Alternatively, the geometry may be characterized
by B-spline surface amplitudes, which would be varied
in the searching algorithm. For each geometry, the
performance is analyzed either by experiment or by
numerical analysis.

Examples of searching methods applied to propeller
design abound: Mertes and Heinke (2008) vary propeller
pitch and camber, and analyze the resulting geometries
using a lifting line model with lifting surface geometry
corrections. Tamura et al (2010) also vary pitch and
camber but analyze using a lifting surface method.
Others use panel methods for performance analysis
(Pashias and Turnock, 2003; Kim et al, 2009; Laurens
et al, 2012, e.g.). Funeno (2009) use the RANSE
method code STAR-CD for analysis and design of a ducted
propeller.

Experimental searching methods involve the
acquisition of a systematic series of experimental data,
the most widely-known example being the Wangeningen
B-Screw Series (Oosterveld and van Oossanen, 1975;
Bernitsas et al, 1981). Isin (1987) interpolated these
data to estimate the performance of a novel propeller
design.

A propeller design may instead be optimized by
way of solving a mathematical optimization problem.
Maximizing propeller efficiency involves minimizing
torque for a specified thrust (or maximizing thrust for
a specified torque). This method is limited by the
types of mathematical optimization problems that can
be constructed. From an analytical point of view, the
lifting line model is the only model simple enough to
admit analytic design optimization. Thus, mathematical
optimization methods are typically used with lifting line
codes, which form the first step in the design process.

However, propeller design optimization involves
more than simply determining the optimum circulation
distribution to maximize efficiency: Duct geometry
design, cavitation considerations, and unsteady loading
all play a factor in final propeller design. Thus, a lifting
line code is the first of many computational tools the
designer might use. A propeller design workflow might
be as follows:

1. ‘Lifting line method’ (e.g. PLL, OpenProp) used for
preliminary design optimization of the circulation,
chord length, and thickness distributions;

2. ‘Coupled lifting surface / Euler solver method’
(e.g. PBD-MTFLOW (Kerwin et al, 1994, 2006)) used
for propeller blade design and analysis;

3. ‘Panel method’ (e.g. MPUF-3A (Lee, 1979; He,
2010), or unnamed code (Gaggero and Brizzolara,
2007)) or ‘RANSE method’ (e.g. Star-CCM+ (CD-
Adapco, 2008; Brizzolara et al, 2008)) used for final
performance check and cavitation analysis.

For example, PLL and then PBD-MTFLOW were recently
used to design an optimized propeller for the
Tethys autonomous underwater vehicle for long range
operations (Bellingham et al, 2010).
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Lifting line design optimization is the important first
step in this workflow, as the results of a lifting line code
set design targets for the propeller blade design code, and
so on. Lifting line codes for the design of free-running
and wake-adapted propulsors have been available for
many years (e.g. PLL (Coney, 1989), OpenProp (Epps
et al, 2009a; Epps, 2010a; Epps et al, 2011) and LLOPT
(Zan, 2008; Arán and Kinnas, 2013)). These prior codes
are all based on a discretized vortex lattice lifting line
model, in which the circulation is assumed constant over
each segment of the lifting line, and each segment of the
lifting line is surrounded by a horseshoe vortex.

Recent extension of the rotor lifting line model
to the design of horizontal-axis turbines uncovered
an inconsistency between the mathematical equations
representing the lifting line wake model and the
numerical implementation of these equations in all of
these prior codes (Epps and Kimball, 2013b). This
article investigates this inconsistency and proposes a
novel wake model that ameliorates this problem.

This article is organized as follows: In §2, the
propeller lifting line model is reviewed, with specific
attention given to the wake model in §2.1. Section
§2.1.2 presents an improved wake model, which more
accurately agrees with the mathematical framework of
moderately loaded lifting line theory than the classical
wake model. Supporting analytical analysis is provided
in §3, and illustrative examples are provided in §4.
Appendix A reviews the details of propeller design
optimization. In the interest of brevity, some variables
are defined in the Nomenclature section at the end of
this article and not in the body text.

2 Rotor lifting-line model

Va

ω rotor blade
(lifting line)

axial inflow

rotation rate

vortex wake

Figure 1: Classical rotor lifting line wake model, with
control points on the key lifting line illustrated by ‘•’.
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Figure 2: Propeller velocity-force diagram at radius r.
Variables are defined in the Nomenclature table.

As illustrated in Figure 1, the rotor lifting line
model is based upon the fundamental assumptions of
moderately-loaded propeller theory: (i) the lifting lines
have equal angular spacing and identical loading; (ii)
the lifting lines are straight, radial lines; and (iii) each
trailing vortex is assumed to be a helix with fixed radius
and pitch, where the wake pitch angle βw(rv) is related
to the total inflow angle at the lifting line, βi(rc).

Figure 2 illustrates the velocities and forces (per unit
radius) on a 2D blade section: axial and tangential inflow
velocities, Va and Vt; induced velocities, u∗a and u∗t ; and
angular velocity ω. The total resultant inflow velocity
has magnitude V ∗ =

√
(Va + u∗a)2 + (ωr + Vt + u∗t )2

and is oriented at pitch angle βi, where

tanβi =
Va + u∗a

ωr + Vt + u∗t
(2.1)

A review of the rotor lifting line model can be found
in (Kerwin and Hadler, 2010) or (Epps and Kimball,
2013b).
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2.1 Wake model

In general, the velocity induced by a vortex filament
can be computed via the Biot-Savard Law:

~u =
Γ̄

4π

∫
d~s× ~ρ
|~ρ|3 (2.2)

where Γ̄ is the circulation about the vortex filament,
d~s is a segment of the filament, and ~ρ is the vector
from the vortex segment to the field point at which the
velocity is being calculated. Careful consideration of
assumptions (i) and (ii) reveals that, by symmetry, the
lifting lines do not contribute to the induced velocity. For
a continuous circulation distribution, Γ(r), the trailing
vortex strength is

Γ̄(r) =

[
−dΓ(r)

dr

]
dr (2.3)

Integrating the influence of the trailing vortex shed from
each radius, rv, equation (2.2) can be recast as:

u∗a(rc) =

∫ R

Rh

ūa(rc, rv, βw)

[
−dΓ(rv)

drv

]
drv (2.4)

ūa(rc, rv, βw) =
1

4π

Z∑
k=1

∫
êa ·

d~s× ~ρ
|~ρ|3 (2.5)

Similarly, u∗t can be written in terms of Γ and ūt.
The sign convention in (2.4) has positive circulation
Γ̄ directed downstream, away from the lifting line (by
right hand rule). The functions ūa and ūt account
for the influence of a unit-strength trailing vortex shed
from each of the Z blades. Thus, they only depend on
the wake geometry (in particular, the wake pitch angle
βw). For constant-pitch, constant-radius helical vortex
filaments, (2.5) can be evaluated analytically (Lerbs,
1952)

For rc < rv:

ūa(rc, rv, βw) =
Z

4πrc
y − ZS1

4πrc
y

ūt(rc, rv, βw) =
ZS1

4πrc
(2.6a)

For rc > rv:

ūa(rc, rv, βw) = −ZS2

4πrc
y

ūt(rc, rv, βw) =
Z

4πrc
+
ZS2

4πrc
(2.6b)

where

y =
rc

rv tanβw

y0 =
1

tanβw
(2.6c)

The first term in (2.6a) and (2.6b) is the circumferential
average induced velocity, and the second term is the
circumferentially-varying component, which is singular
(i.e. S1 → −∞ as rc → r−v and S2 → ∞ as rc → r+v ).
These singular terms are given by (Lerbs, 1952) as an
infinite series of Bessel functions, but they can instead
be computed using the asymptotic formulae of (Wrench,
1957)†

S1 = −A
[

U

1− U +B ln

(
1 +

U

1− U

)]
S2 = A

[
1

U − 1
−B ln

(
1 +

1

U − 1

)]

A =

(
1 + y20
1 + y2

) 1
4

B =
1

24Z

[
9y20 + 2

(1 + y20)1.5
+

3y2 − 2

(1 + y2)1.5

]

U =

y0
(√

1 + y2 − 1
)

y
(√

1 + y20 − 1
) exp

(√
1 + y2 −

√
1 + y20

)Z
(2.6d)

For numerical implementation, equation (2.4) can
either be formulated assuming Γ(r) is a continuous
function or it can be formulated assuming that Γ(r) is
piecewise constant across each segment of the lifting line.

Lerbs’ (1952) continuous formulation employed
a continuous circulation distribution Γ(r), which was
represented by a Fourier sine series. In this case,
(2.4) is an improper integral, the principal value of
which Lerbs determined analytically in terms of the
Fourier coefficients. Implicit in his model is that
the wake consisted of radially-continuous vortex sheets,
faithfully representing physical reality. However, two
disadvantages of Lerbs’ theory exist: (1) the sine series
representation required the circulation to be zero at the
hub, which is not physically realistic‡; and (2) Lerbs’
optimization equation ((A.9) herein) is not extendable
to multi-component propulsors. Hence, a discretized
formulation of (2.4) has been found to be advantageous.

In the discrete vortex lattice lifting line formulation
(Kerwin, Coney, and Hsin, 1986), the lifting lines
are discretized into M constant-strength panels. The
induced velocities are computed at ‘control points’ on the
key lifting line at radii rc(m) (m=1...M), which typically

†Note that Wrench (1957) gives equations for F1 ≡ S1/2Zy0 and F2 ≡ S2/2Zy0, as opposed to the more convenient S1 and S2

notation adopted herein.
‡It is possible to model non-zero hub circulation by including half-sine terms in the Fourier expansion.
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are located at the midpoint of each panel. The panel
endpoints are denoted by radii rv(m) (m=1...M+1), so
panel n spans radii rv(n) to rv(n+1) and contains rc(n).
Let Γ(m) ≡ Γ(rc(m)), u∗a(m) ≡ u∗a(rc(m)), and so on.

2.1.1 The classical wake model

In the classical wake model (Kerwin, Coney, and
Hsin, 1986), one trailing vortex is shed from each panel
endpoint; the trailing vortex at radius rv(n) and has
strength

Γ̄(rv(n)) = Γ(n−1)− Γ(n) (2.7)

where again the sign convention is that Γ̄ is positive when
pointing downstream. The induced velocities (2.4) are
now computed by discrete summation

u∗a(m) = ūa(rc(m), rv(1), βw(1))
[
− Γ(1)

]
+

M∑
n=2

ūa(rc(m), rv(n), βw(n))
[
Γ(n−1)− Γ(n)

]
+ ūa(rc(m), rv(M+1), βw(M+1))

[
Γ(M+1)

]
(2.8)

(and similarly for u∗t ). Thus, equation (2.4) in Lerbs’
continuous formulation is replaced by equation (2.8) in
Kerwin’s discrete formulation. Equation (2.8) can be
rewritten in terms of ‘horseshoe influence functions’ (ū∗a
and ū∗t ) as follows:

u∗a(m) =

M∑
n=1

ū∗a(m,n) Γ(n) (2.9)

ū∗a(m,n) = ūa(rc(m), rv(n+1), βw(n+1))

− ūa(rc(m), rv(n), βw(n)) (2.10)

where ūa and ūt are still given by (2.6).

In Lerbs’ continuous formulation, the wake pitch
angle is set to the total inflow angle at the lifting
line, βw(r) = βi(r), but in the discretized formulation,
βw(rv), must be interpolated from βi(rc). For example,
PLL performs spline interpolation,

tanβv(rv(n)) = spline(rc, tanβi, rv(n)),

and OpenProp v2.4 performs ‘piecewise cubic Hermite
interpolating polynomial’ interpolation,

tanβv(rv(n)) = pchip(rc, tanβi, rv(n))

Consistent with Lerbs’ approach, the wake pitch angle is
then set to these interpolated values:

tanβw(n) = tanβv(rv(n)) (2.11)

The problem with the classical wake model is that
equations (2.8) and (2.11) do not faithfully represent
the model embodied in (2.4). For example, in Lerbs’
continuous formulation, the circumferential average
component of ūa(rc, rv=rc, βw(rv=rc)) depends on the
inflow angle at the control point βw(rv=rc) = βi(rc);

however, in this discrete formulation, ū∗a(m,m) depends
on the interpolated value at a different radius, namely
βw(m+1) = βv(rv(m+1)). This and other mathematical
inconsistencies regarding the singular terms (S1 and S2)
will be discussed in §3.

2.1.2 The present wake model

The present wake model allows for the possibility that
two distinct trailing vortices are shed from each panel
junction. In this model, each panel is surrounded by its
own complete horseshoe vortex. This is consistent with
the spirt of (2.10) but allows additional mathematical
flexibility in defining the wake pitch angles. In the
present wake model, the pitch of the two trailing
vortices for each horseshoe vortex are analytically related
to the inflow angle at the control point for that
horseshoe. Sections §3 will show that this model
faithfully represents the model embodied in (2.4).

In the present wake model, the induced velocities are
still given by (2.9). However, the horseshoe influence
functions (ū∗a and ū∗t ) are redefined. Let ‘0’ and ‘1’
denote the panel endpoints, and generalize (2.10) as
follows:

ū∗a(m,n) = ūa(rc(m), rv(n+1), βw(n,1))

− ūa(rc(m), rv(n), βw(n,0)) (2.12)

In the present wake model, the wake pitch at the panel
endpoints is set such that it is mathematically consistent
with the pitch computed at the panel control point:

tanβw(n,1) = rc(n) tanβi(n)/rv(n+1)

tanβw(n,0) = rc(n) tanβi(n)/rv(n) (2.13)

In other words, the wake pitch, 2πr tanβw, is assumed
to be constant over the span of each vortex panel, with
the value taken as that computed at the control point,
2πrc tanβi.

The classical wake model can also be represented in
the notation of (2.12) by setting

tanβw(n,0) = tanβv(n)

tanβw(n,1) = tanβv(n+1) (2.14)

In summary, both vortex lattice lifting line methods
can be represented by equations (2.9), (2.12), and (2.6).
The present wake model further employs (2.13), whereas
the classical wake model employs (2.14).

2.1.3 Illustration and discussion

The classical wake model and present wake model
are graphically illustrated in Figures 3 and 4. The
present wake model assumes each vortex panel is a
constant-pitch vortex sheet, with the pitch taken as
that computed at the control point. No interpolation
is needed, and the wake pitch is analytically consistent
with the computed pitch at the control points.
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Figure 3: The classical wake model represents a single
vortex sheet, whereas the present wake model represents
each panel as a radially-constant-pitch vortex sheet
(adjacent panels plotted in black and red for clarity).

In the classical wake model, one trailing vortex
springs from the lifting line at each interior vortex
point rv(n=2,...,M), and the strength of this vortex is
the difference in the circulation between adjacent vortex
panels, Γ(n−1)−Γ(n). In the present model, two vortices
are shed at each interior vortex point: The vortex shed
from rv(n) with pitch angle rc(n−1) tanβi(n−1)/rv(n) has
strength Γ(n−1), and the vortex shed with pitch angle
rc(n) tanβi(n)/rv(n) has strength −Γ(n). In the case that
the wake truly is constant-pitch, rc(n−1) tanβi(n−1) =
rc(n) tanβi(n) and these two vortices are coincident, as in
the classical model. In both models, one trailing vortex
springs from each exterior vortex point (rv(n=1) and
rv(n=M+1)), with strengths −Γ(1) and Γ(M), respectively.
Again, in the present model, the pitch of these tip
vortices are analytically related to the pitch at the
control points, whereas in the classical model, the pitch
of these tip vortices is extrapolated. This extrapolation
is known to cause numerical instability of the lifting line
method.
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Figure 4: Example illustration of the key blade for the
classical and present wake models: (a) Example linear
wake pitch distribution (blue line), with the values used
by each model marked by a ‘•’; (b) Classical wake model,
with pitch corresponding to blue ‘•’ in (a); (c) Present
wake model (with adjacent panels plotted in black and
red for clarity), with pitch corresponding to black ‘•’ and
red ‘•’ in (a) ; (d) Classical wake model, with 19 vortex
panels; (e) Present wake model, with 19 vortex panels.

Figure 4 further illustrates the two wake models.
In this example, the wake pitch is chosen to vary
linearly over the span, with a nominal advance coefficient
achieved at the tip of J = 0.75:

(r/R) tanβi(r) =
J

π

[
0.7 + 0.3

r −Rh

R−Rh

]
(2.15)
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Figure 4a shows this linear pitch distribution. Figure 4b
illustrates the classical wake model with M = 5 vortex
panels; since r tanβi is linear in this example, evaluating
rv tanβw in the classical model (2.14) simply reduces
to evaluating (2.15) at each r = rv, and these values
are shown as ‘•’ Figure 4a. Figure 4c illustrates the
present wake model withM = 5 vortex panels, plotted in
alternating colors for clarity. In the present model (2.13),
r tanβi is assumed constant across each panel, with the
value computed by evaluating (2.15) at each r = rc (i.e.
at the panel midpoint), and the corresponding rv tanβw
values are shown as ‘•’ and ‘•’ in Figure 4a.

Figures 4d and 4e show the classical and present
wake models with M = 19 vortex panels. With a small
panel width, δrv = (R−Rh)/M , the present wake model
appears visually to represent a continuous vortex sheet,
as in the classical model. In fact, the jump in wake

pitch between adjacent panels is
∂[r tanβi]

∂r
δrv, so as the

number of panels increases, this discontinuity vanishes as
1/M , and the wake appears as a smooth vortex sheet.

In reality, the near wake is a continuous vortex sheet,
as opposed to a discrete lattice of horseshoe vortices. In
modeling this continuous sheet with a discrete number of
horseshoes, there is no physical reason to require a single
vortex shed from the lifting line at any particular radius:
Each constant-strength horseshoe satisfies Helmholtz’
Laws independent of the other horseshoes. By setting
pitch analytically and allowing the possibility of free
vortices with differing pitch as described, the math
embodied in the Lerbs/Wrench equations works out to
be theoretically consistent with itself.

Free-running optimized propellers have r tanβi
nearly constant. In fact, the Betz optimum propeller
is one for which r tanβi = constant, in which case the
classical and present wake models coincide.

Figure 5 shows the induced velocities predicted by
the classical and present wake models, for the M = 5
panel example shown in Figure 4. The velocities shown
are those induced by the horseshoe panel spanning radii
rv/R = 0.52 to 0.68; for reference, the panel endpoint
radii are marked by ‘×’. The control point radii are
at the midpanel locations. This example shows that
the choice of wake model has a small but noticeable
effect on the predicted induced velocities, the contrast
being larger for smaller radii. In particular, the axial
induced velocities predicted by the classical model are
larger in magnitude (more negative) for low radii than
those predicted by the present wake model. For Z = 50
(approximating Z = ∞), the axial induced velocities
are correctly evaluated to be zero in the present model
and erroneously nonzero in the classical model. The
tangential induced velocities also show slight model
differences, although not as pronounced as the axial
induced velocities.
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Figure 5: Normalized velocity (u∗a/Va, u∗t /Va) induced
along a lifting line at discrete control point radii (r/R)
by a set of Z horseshoes of strength Γ = 2πRVa/Z
spanning radii rv/R = 0.52 to 0.68. The wake pitch is
given in equation (2.15). ‘×’ denote horseshoe endpoint
radii rv/R.

3 Analytical analysis
3.1 Infinite blade number case

In the classical wake model, the wake pitch angle
is interpolated from the inflow angle at the control
points. Using these interpolated values, the wake pitch
angle is set via equation (2.14). This model implicitly
assumes that there is one trailing vortex shed from
each rv location, as illustrated in Figure 1. Although
this is physically realistic, it leads to a mathematical
inconsistency between the intended wake pitch angle at
a control point, βi(rc(n)), and the induction factors for
the panel surrounding that point, ū∗a(n,n) and ū∗t (n,n).
This inconsistency is most easily revealed by examining
the case of an infinite-bladed rotor.

Careful examination of equations (2.9), (2.12), and
(2.6) shows that for a large number of blades, the
horseshoe influence matrices are nearly diagonal. That
is, for a large number of blades, one can reasonably make
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the approximations

ū∗a(m,n) ≈ 0 (for m 6= n)

ū∗t (m,n) ≈ 0 (for m 6= n)

u∗a(n) ≈ ū∗a(n,n) Γ(n)

u∗t (n) ≈ ū∗t (n,n) Γ(n) (3.1)

In the limit of an infinite-bladed rotor, the singular
terms S1 and S2 become zero, equations (3.1) become
exact, and the induced velocities are simply the
circumferential average velocities. Practically, Z = 50
blades yields these results to O(10−5) for any reasonably
fine discretization (say M > 10 panels).

In the infinite-bladed case, equations (2.9), (2.12),
and (2.6), along with the classical wake model (2.14)
yields

u∗a(rc(n)) = ū∗a(n,n) Γ(n) =
Z

4πrv(n+1) tanβv(n+1)
Γ(n)

u∗t (rc(n)) = ū∗t (n,n) Γ(n) = − Z
4πrc(n)

Γ(n) (3.2)

The actual circumferential average velocities at the
propeller disk are as follows:

ũa(rc) =
Z

4πrc tanβi(rc)
Γ(rc)

ũt(rc) = − Z
4πrc

Γ(rc) (3.3)

(Hough and Ordway, 1964).

Comparing (3.2) and (3.3), it is evident that the
circumferential average axial induced velocity predicted
by the classical wake model is inconsistent with the
analytically-derived circumferential mean velocity in
(3.3) for all but the special case:

rv(n+1) tanβv(n+1) = rc(n) tanβi(n)

which is the case of a constant-pitch vortex sheet.

Using the present wake model (2.13), the influence
functions in the infinite-bladed case are now analytically
consistent with (3.3):

u∗a(rc(n)) = ū∗a(n,n) Γ(n) =
Z

4πrc(n) tanβi(n)
Γ(n)

u∗t (rc(n)) = ū∗t (n,n) Γ(n) = − Z
4πrc(n)

Γ(n) (3.4)

The present wake model enforces this consistency by
assuming that each horseshoe panel is a constant-pitch
vortex sheet.

As will be shown in §3.2, (3.4) represents the
circumferential average component of the horseshoe
influence functions and is analytically consistent with
(3.2) for any number of blades.

3.2 Finite blade number case

We have already shown that the classical wake
model does not yield the correct circumferential average
velocities for infinite blade number. We now consider
the behavior of the classical and present wake models
for finite blade number. Recall the notation that ‘0’ and
‘1’ denote the endpoints of panel n at rv(n) and rv(n+1),
respectively. For convenience, define the notation

y(0) ≡ y(rc(m), rv(n), βw(n,0))

y(1) ≡ y(rc(m), rv(n+1), βw(n,1))

S
(0)
k ≡ Sk(rc(m), rv(n), βw(n,0))

S
(1)
k ≡ Sk(rc(m), rv(n+1), βw(n,1))

where y and Sk, k=1,2, are auxiliary variables defined in
(2.6c) and (2.6d), respectively.

The key difference between the two models is in the
calculation of the auxiliary variable y in (2.6c), which is
reproduced here:

y =
rc

rv tanβw
(2.6c)

In the classical wake model

y(0) =
rc(m)

rv(n) tanβv(n)
6= rc(m)

rv(n+1) tanβv(n+1)
= y(1)

(3.5)

whereas in the present wake model

y(0) = y(1) =
rc(m)

rc(n) tanβi(n)
= y (3.6)

To reiterate, for the classical model y(0) 6= y(1), whereas
for the present model y(0) = y(1) = y. This small
inequality in (3.5) causes large errors in computing
ū∗a(m,n) and ū∗t (m,n).

Consider computing ū∗a(m,n) and ū∗t (m,n) for two of
the three possible cases: (A) rc(m) < rv(n) < rv(n+1);
(B) rv(n) < rc(n) < rv(n+1); (C) rv(n) < rv(n+1) < rc(m).
Since the conclusions drawn from Case C are similar to
Case A, the details of Case C are left to the reader.

First consider Case A: rc(m) < rv(n) < rv(n+1).
In this case, ū∗a(m,n) and ū∗t (m,n) are found by inserting
(2.6a) into (2.12) twice as follows:

ū∗a(m,n) =

[
Z

4πrc
y(1) − ZS

(1)
1

4πrc
y(1)

]

−
[
Z

4πrc
y(0) − ZS

(0)
1

4πrc
y(0)

]

=
Z

4πrc

[
y(1) − y(0)

]
− Z

4πrc

[
S
(1)
1 y(1) − S(0)

1 y(0)
]

(3.7a)
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ū∗t (m,n) =
Z

4πrc

[
S
(1)
1 − S(0)

1

]
(3.7b)

As discussed in §3.1, the first term in (3.7a) is the
circumferential average induced velocity, which should
be zero according to (3.3). The second term is the
difference of two large numbers, S(1)

1 y(1) and S
(0)
1 y(0),

which must be computed accurately for the difference to
be small, as it should be. In the classical wake model,
y(0) 6= y(1), so the circumferential average velocity in
(3.7a) is erroneously non-zero. Also, the discrepancy
between y(0) and y(1) may cause errors in the difference[
S
(1)
1 y(1) − S(0)

1 y(0)
]
, thus leading to additional errors

in ū∗a(m,n). By contrast, the present model has y(0) =
y(1) = y, so the circumferential average velocity in (3.7a)
is zero, as desired. Additionally,

[
S
(1)
1 y(1) − S(0)

1 y(0)
]

=[
S
(1)
1 − S(0)

1

]
y, and this computation is accurate as well.

Now consider Case B: rv(n) < rc(n) < rv(n+1).
In this case, ū∗a(n,n) and ū∗t (n,n) are found by inserting
(2.6a) and (2.6b) into (2.12) as follows:

ū∗a(n,n) =

[
Z

4πrc
y(1) − ZS

(1)
1

4πrc
y(1)

]

−
[
−ZS

(0)
2

4πrc
y(0)

]

=
Z

4πrc
y(1) − Z

4πrc

[
S
(1)
1 y(1) − S(0)

2 y(0)
]

(3.8a)

ū∗t (n,n) = − Z
4πrc

+
Z

4πrc

[
S
(1)
1 − S(0)

2

]
(3.8b)

Again, the first term in (3.8) is the circumferential
average velocity, which should agree with (3.3) regardless
of the number of blades. In the classical wake model,

y(1) 6= rc(n)

rc(n) tanβi(n)

so the axial circumferential average velocity does not
agree with (3.3) for any arbitrary number of blades. By
contrast, the present model correctly yields y(0) = y(1) =
y (= 1/ tanβi(n) in Case B), which leads to

− ū
∗
t (n,n)

ū∗a(n,n)
= tanβi(n) ,

in agreement with (3.3). As with Case A above, the
singular terms are only accurately calculated with the
present wake model.

This analysis shows that the present wake model
more accurately agrees with the analytic representation
of the rotor lifting line model.

4 Illustrative examples
The reader is assumed to be familiar with the lifting

line design optimization problem, which is discussed at
length in (Kerwin, Coney, and Hsin, 1986) or (Epps and
Kimball, 2013b). For details, see also Appendix A.

4.1 Summary of codes used in this study

In order to systematically assess the wake model
proposed in §2, the author produced four versions of a
lifting line code (OpenProp v3.1) with one change made
between each version. In this way, controlled numerical
experiments were performed. Table 1 summarizes the
codes used in this study: Both PLL and OpenProp
v2.4.4 employ the classical wake model and a numerical
method based on a linearized system of equations. Four
combinations of wake model (classical or present) and
numerical method (linear system or Newton solver)
are implemented in OpenProp v3.1, which can thus be
used to perform controlled studies of the effect of wake
model and/or numerical solution method. The only
difference between <OpenProp v3.1 with the present
wake model> and <OpenProp v3.1 with the classical
wake model> is the equation used to evaluate βw, (2.13)
and (2.14) respectively.

As expected, the numerical method has no effect on
the final solution. Three illustrative examples are given
in this section based on DTRC propeller 4119: open-
water case (§4.2), wake-adapted case (§4.3), and bollard
pull case (§4.4). In all cases where both the linear solver
and Newton solver converged, the final results were
within the tolerance of the iterative scheme (considered
converged when |Gcurrent−Glast|/Gcurrent < 10−4). For
example, in the open water case, the differences between
the linear system solver and Newton solver results were
on the order of 10−7 forG, 10−6 for each of u∗a/Vs, u∗t /Vs,
and (r/R) tanβi, and 10−7 for each of KT , 10KQ, and
η. Since the choice of solver had no impact on the final
results, the following three sections compare the results
of the codes employing the linear system solver.

Table 1: Summary of design optimization methods.
‘LL’ stands for ‘Lifting Line’. The LL-Linear and
LL-Newton methods are described in further detail in
(Epps and Kimball, 2013b), and the OpenProp source
code is available online at (Epps and Kimball, 2013a).

Wake Numerical
Name model method
PLL Classical Linear system
OpenProp v2.4.4 Classical Linear system
OpenProp v3.1 Classical Linear system
OpenProp v3.1 Classical Newton solver
OpenProp v3.1 LL-Linear Present Linear system
OpenProp v3.1 LL-Newton Present Newton solver
Betz condition code n/a n/a
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4.2 Propeller 4119 open water case

David Taylor propeller 4119 (designed by Denny
(1968)) is a free-running propeller with a nearly ideal
circulation distribution, fair blades, and moderate
thickness. Its performance has been well characterized
by many workers (Jessup, 1989, e.g.). Here, we
design a 4119 replica, given the propeller 4119 design
specifications: Z = 3, Js = 0.833, KT = 0.15, Va/Vs =
1, Vt = 0, and M = 40. Viscous forces are considered,
with CD = 0.008 and the blade outline given in Table 2.

Table 2: DTMB Propeller 4119 chord distribution.
r/R 0.2000 0.3000 0.4000 0.5000 0.6000
c/D 0.3200 0.3625 0.4048 0.4392 0.4610
r/R 0.7000 0.8000 0.9000 0.9500 1.0000
c/D 0.4622 0.4347 0.3613 0.2775 0.0020

The optimized circulation distribution is plotted
in Figure 6. There is very good agreement between
all optimization methods, validating the wake model
developed herein and the new numerical methods
implemented in OpenProp v3.1. They also agree with
the experimental data of (Jessup, 1989) and the coupled
lifting-surface/RANS analysis of (Kimball, 2001), which
indicates that both the magnitude and distribution of
circulation are correct.

As shown in Figure 6, the classical wake model
(embodied in PLL and OpenProp v2.4.4) and the
present wake model (embodied in OpenProp v3.1)
yield nearly identical design optimization results for a
moderately-loaded propeller in uniform inflow. This
is expected, since the optimized wake pitch r tanβi is
nearly constant (see Figure 6c); in the case that the wake
pitch is constant, the classical wake model and present
wake model are identical.

Table 3 shows that the performance predictions (KT ,
KQ, and η) are also nearly identical, regardless of wake
model or solver, as expected. These design optimizations
converged in 6 to 7 iterations for all four codes, with no
appreciable difference in run time.

Table 3: Open-water design case results.

Name OpenProp OpenProp OpenProp OpenProp
v2.4.4 v3.1 v3.1 v3.1

wake: classical classical present present
solver: linear linear linear Newton

Js 0.833 0.833 0.833 0.833
KT 0.15 0.15 0.15 0.15

10KQ 0.2825 0.2827 0.2829 0.2829
η 0.7041 0.7033 0.7030 0.7030

As a check of convergence versus radial discretization,
two codes were run for various number of panels: M = 8,
12, 16, 20, and 40. The (OpenProp v3.1, classical wake
model, linear solver) code and the (OpenProp v3.1,
present wake model, linear solver) code exhibited similar
numerical convergence versus panel number for both the

circulation distribution and efficiency. The change in
efficiency between M = 16 and 20 panels was 0.0001,
and the root mean square difference in circulation
distribution was almost nil. These convergence results
were similar for both this open-water case and the
following wake-adapted case (§4.3).
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Figure 6: Optimized circulation distribution for a
DTMB propeller 4119 replica, G = Γ/(2πRVs).
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4.3 Wake adapted case

Consider now a notional wake-adapted propeller
design. The assumed wake profile Va(r) is that from
(Laskos, 2010) and is representative of a single-screw ship
(see Figure 7). For consistency with the open water case,
the propeller 4119 design specifications are carried over
from §4.2; the only difference between this wake-adapted
design and the open-water design is the assumed axial
inflow Va(r).
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Figure 7: Axial inflow used for the wake adapted design
case (wake data from (Laskos, 2010)): (a) polar plot
Va(r, θ); (b) circumferential-average Va(r).

Table 4: Wake-adapted design case converged results.

Name OpenProp OpenProp
v3.1 v3.1

wake: classical present
solver: linear linear

Js 0.833 0.833
Ja 0.6527 0.6527
KT 0.15 0.15

10KQ 0.2393 0.2408
η 0.6512 0.6471

Table 4 and Figure 8 shows the converged design
results. Since the linear solver and Newton solver yielded
nearly identical results, only the linear solver results are
shown.

Figure 8c shows that the wake pitch varies radially
between 0.2 < r/R < 0.6 (and is approximately
constant for r/R > 0.6). As a result, the “optimized”
circulation distribution and induced velocities are
different depending on choice of wake model. The
predicted efficiencies given in Table 4 are within 0.004,
which is within the uncertainty of the lifting line model
(and most experiments!).
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Figure 8: Wake adapted design case: (a) circulation,
G; (b) induced velocities, u∗a/Vs and u∗t /Vs; and (c) wake
pitch (r/R) tanβi.

The results in Figure 8 prompt the question: In
the limit of infinite span-wise panels, should the present
and classical method (numerically) converge to the same
result? This question is difficult to answer, because
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the discretized lifting line model is only valid for finite
panel number, M , by definition. Moreover, any discrete
lifting line design optimization code will crash for a
large enough M . The reason is that the numerics are
very sensitive to round off error. Recall, computation
of the horseshoe influence functions in (3.7) or (3.8)
involves taking the difference of two very large numbers,
S1 and S2. As M grows, so to do S1 and S2, and
for large enough M , the computer can not accurately
compute their difference. Unfortunately, the critical M
is somewhat low, say 20-40 panels. In Figure 8, the
classical wake model results are shown with M = 20
panels (and that code crashes with M = 40). Similarly,
the present wake model results are shown with M = 40
panels (and that code crashes with M = 80). Thus, it is
impossible to see numerically what would happen with,
say, M = 1000 panels.

One might instead ask: Are each of the curves in
Figure 8 converged with panel number, M? To answer
this question, consider the following spatial resolution
convergence results. Let Gc,20 be the circulation
distribution G(r) for the classical model with M =
20, and let Gp,20 be that with the present wake
model. Let rms be the root mean square and pchip
be the piecewise cubic Hermite interpolating polynomial
interpolation function. Some numerical results are
as follows: rms(Gc,20 − Gp,20)/rms(Gp,20) = 0.0327,
and rms(Gp,20 − pchip(rp,40, Gp,40, rp,20))/rms(Gp,20) =
0.0032. These calculations show that the difference
between the classical and present wake models (3.27%) is
about 10 times larger than the difference between present
wake model with M = 20 and 40 panels (0.32%). Thus,
it is reasonable to conclude that the results in Figure 8
are converged with panel number and that the difference
between the circulation distributions is a real effect of the
choice of wake model.

In a design optimization problem resulting in a
constant wake pitch, r tanβi (e.g. the open-water case
in §4.2), the present and classical wake models yield
identical results (see Figure 7). In design optimization
problems resulting in a radially-varying wake pitch (e.g.
this wake-adapted case), the present and classical wake
models yield different horseshoe influence functions.
Consequently, the results from the present and classical
codes are different (see Figure 8). In particular, Figure 8
shows that the circulation and induced velocities differ
appreciably over the part of the span where the wake
pitch varies appreciably.

4.4 Bollard pull case

We now consider the bollard pull design condition
(zero advance speed, Va(r) = 0). This example is
purely illustrative, since it is well accepted that the
moderately-loaded lifting line model does not apply in
the case of a heavily-loaded propeller at bollard pull. In
the heavily-loaded case, the propeller wake is known to
contract considerably and roll up, two effects that are
not captured in the moderately-loaded lifting line model
discussed herein. In the extreme case of zero advance
speed, Va(r) = 0, codes employing the classical wake
model break down due to numerical instabilities, but
codes employing the present wake model converge. This
is due to the treatment of the singular terms in equation
(2.6), as discussed in §3.

The propeller 4119 example is again used for
consistency with §4.2 and §4.3. Since we had set Vs = 1
m/s and D = 1 m in the open water case (§4.2), the
only modification to the design input was setting the
axial inflow to zero§ , Va/Vs = 0.

For this example, six codes (all five OpenProp codes
and the Betz condition code) were each run twice (once
with each of the initialization methods (A.17) or (A.18)).
Regardless of the initialization method, the end result
was the same: OpenProp v2.4.4 crashed, as it employs
the unstable ‘classical’ wake model. In addition, both
OpenProp v3.1 codes employing the ‘classical’ wake
model crashed as well. However, both OpenProp v3.1
codes employing the ‘present’ wake model successfully
converged. To reiterate, the only difference between
OpenProp v3.1 crashing or converging was the wake
model used to compute ū∗a and ū∗t . The Betz condition
explicitly sets r tanβi = constant, so the classical wake
model and present wake model are mathematically
identical in that code.

Table 5: Bollard pull design case converged results.

Name OpenProp v3.1 OpenProp v3.1 Betz
‘LL-Linear’ ‘LL-Newton’

wake: present present n/a
solver: linear Newton n/a

Js 0.833 0.833 0.833
Ja 0 0 0
KT 0.15 0.15 0.15

10KQ 0.1116 0.1116 0.1123
η 0 0 0

QF 0.6611 0.6611 0.6568
iterations 49 17 5

The results of the three converged codes are shown
in Table 5 and Figure 9. The results were considered
converged when the fractional change in non-dimensional
circulation between iterations was less than 10−4:
(|Gcurrent − Glast|/Gcurrent < 10−4). The use of the

§Typically, the ‘reference speed’ Vs used for non-dimensionalization is the ship speed (as indicated by the underscore ‘s’). However,
in the bollard pull case, the ship speed is zero by definition. Numerically, one can model the zero-ship-speed case by setting Vs = 1 m/s
and Va/Vs = 0, where Va is the propeller advance speed.
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bollard pull initialization (A.18) in lieu of open-water
initialization (A.17) had no effect on either the numerical
stability of any code, nor on the final converged result
(up to the fourth significant digit). Likewise, the
numerical method used (‘linear system’ or ‘Newton
solver’) did not affect the converged result (up to the
fourth significant digit).

Figure 9 shows the converged results for both the
open water (Va/Vs = 1) and bollard pull (Va/Vs = 0)
cases. The two solution methods, ‘LL-Linear’ and ‘LL-
Newton’, converged to the same circulation, induced
velocities, and wake pitch.

The optimized circulation distribution is shown in
Figure 9a. In comparison to the open water case,
the bollard pull case shows a flatter, more broad
circulation distribution, with circulation carried further
out towards the propeller tip. This is consistent
with actuator disk theory, which prescribes constant
circulation. Comparing the induced velocities shown in
Figure 9b, we find that the tangential induced velocity
is similar in magnitude between the open water (‘- -’)
and bollard pull (‘-•-’) cases, but there is less tangential
induced velocity near the tip for the bollard pull case.
This can be understood as follows: since the thrust scales
by
∫

(ωr+u∗t )Γ dr, so an increase of Γ near the tip must
accompany a decrease of u∗t to maintain the same thrust.

Another quantity of interest, shown in Figure 9c,
is (r/R) tan(βi). According to the Betz condition, this
should be constant, such that the wake forms a constant-
pitch helical vortex sheet. Interestingly, (r/R) tanβi ≈
constant for both the open water and bollard pull cases.

The nature of the optimization algorithm was
further investigated by considering a hub-less propeller.
Assuming no hub present, the ‘LL-Newton’ code was
re-run; the resulting induced velocities and wake pitch
were nearly identical to those when a hub was present,
as shown in Figures 9(b) and 9(c). However, the hubless
circulation distribution tended to zero at the hub (r/R =
0.2), contrary to that of the hubbed propeller. Thus,
this hubless circulation distribution was simply what
was needed to produce the same induced velocities as
the hubbed case. This demonstrates that the propeller
optimization equations (A.14) are actually optimizing
the induced velocity, not the circulation. Circulation
is just a convenient choice of independent variable
for the derivation and solution of the mathematical
optimization equations.
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Figure 9: Bollard pull design case: (a) circulation, G;
(b) induced velocities, u∗a/Vs and u∗t /Vs; and (c) wake
pitch (r/R) tanβi.
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4.5 Horizontal-axis turbine design

Epps and Kimball (2013b) created a unified rotor
lifting line theory for the design of either propellers or
horizontal-axis turbines. In that work, a parametric
design study was performed in which several turbines
were optimized to maximize power extraction at each of
a range of tip-speed ratios. The study considered both
infinite-bladed (Z = 100) and finite-bladed (Z = 3)
cases, assuming uniform inflow (Va/Vs = 1, Vt = 0),
inviscid flow (CD = 0), M = 80 panels, and a blade root
radius of Rhub/R = 0.005. No hub image was used.

Figure 10 shows power coefficient versus tip-speed
ratio for each of the optimized turbines. Momentum
theory is shown as the solid line, and the well-known Betz
Limit of CP = 16/27 ≈ 0.5926 is reached in the limit of
infinite tip speed ratio, λ. The off-design performance
of the propellers designed for λ = 2, 5, and 8 is also
shown. As expected, for any given tip speed ratio (e.g.
λ = 3), the off-design performance curves (solid lines)
never exceed the performance of the turbine optimized
for that tip speed ratio (dashed lines). For Figure 10,
the present wake model was used.

If the classical wake model were used, then the off-
design performance curves (solid lines) would cross the
optimized design frontier (dashed lines). In other words,
the code would claim that some turbine operating at
some off-design λ could have a larger power coefficient
than the turbine specifically optimized for that λ. This
violates the premise of the design optimization method,
which is shown in Figure 10 to be in agreement with
momentum theory. This self-inconsistency is a direct
result of the wake model. In contrast, the present wake
model yields self-consistent design optimization and off-
design performance analysis.
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Figure 10: Power coefficient CP of several turbines
at their design point ‘- -◦- -’, as well as the off-design
performance of selected turbines ‘–•–’. Tip speed ratio
is defined as λ = ωR/Vs.

5 Summary
This paper reconsiders the classical wake model

typically used in moderately-loaded propeller lifting
line theory (§2). Through analytical analysis, it is
shown that the classical wake model is theoretically
and numerically self-inconsistent (§3). Further analysis
shows that a self-consistent wake model can be created,
by relating the pitch of the trailing vortex filaments to
the pitch of the total inflow computed at the lifting line
control points; this leads to the present wake model
described in (§2.1.2). Illustrative examples (§4) show
that the ‘classical’ and ‘present’ wake models yield nearly
identical optimized propellers when the wake pitch is
nearly constant over the span, as expected. However,
for the case of a non-uniform inflow, the ‘classical’
and ‘present’ wake models produce different optimized
circulation distributions, with the present wake model
suggesting a small reduction in hub circulation; efficiency
for these two designs is within 0.004, making it difficult
to distinguish which design might perform better.
In the extreme example of the bollard pull design
case (zero forward speed), the classical wake model
causes the propeller optimization code to crash, while
the present wake model provides enhanced numerical
stability leading to an optimum bollard pull thruster
design. Horizontal-axis turbine designs are presented,
showing that the present wake model leads to a self-
consistent framework for design optimization and off-
design performance analysis, whereas the classical wake
model produces self-inconsistencies in the model. In
summary, the present wake model is theoretically self-
consistent and numerically more stable than the classical
wake model, thus enabling propeller design over a wider
range of scenarios and enabling application of rotor
lifting line theory to horizontal axis turbine design.
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Nomenclature

Symbol Description
α angle of attack (rad)
αi ideal angle of attack (rad)
β free-stream inflow angle (rad)
βi total inflow angle (rad)
βw wake pitch angle (rad)
ρ fluid density (kg/m3)
θ section pitch angle (rad)

ω = 2πn rotation speed (rad/s)
Γ circulation (m2/s)
c section chord length (m)
n rotation speed (rev/s)
r radial coordinate (m)
rc control point radius (m)
rv vortex point radius (m)
u∗a axial induced velocity (m/s)
u∗t tangential induced velocity (m/s)
ū∗a axial horseshoe influence

function (1/m)
ū∗t tangential horseshoe influence

function (1/m)
ũa circumferential average

axial induced velocity (m/s)
ũt circumferential average

tangential induced velocity (m/s)
Ṽa volumetric mean inflow

velocity (m/s)
D = 2R rotor diameter (m)
Fi = ρV ∗Γ inviscid lift force

per unit span (N/m)
Fv = 1

2ρ(V ∗)2CDc viscous drag force
per unit span (N/m)

Q torque (N-m)
R rotor radius (m)
Rh hub radius (m)
T thrust (N)
Va axial inflow speed (m/s)
Vs ship/wind speed (m/s)
Vt tangential inflow speed (m/s)
V ∗ total inflow speed (m/s)

Symbol Description

η =
T Ṽa

2πnQ
wake-adapted efficiency

CD section drag coefficient

CL =
2 Γ

V ∗c
section lift coefficient

G =
Γ

2πRVs
circulation

Js =
Vs
nD

advance coefficient

Ja =
Ṽa
nD

wake-adapted adv. coeff.

KQ =
Q

ρn2D5
torque coefficient

KT =
T

ρn2D4
thrust coefficient

M number of panels
QF quality factor
Z number of blades
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A Rotor lifting-line design optimization
A.1 Loads, efficiency, and quality factor

The thrust and torque acting on the rotor are

T = Z
∫ R

Rh

[Fi cosβi − Fv sinβi]dr (ea) (A.1)

Q = Z
∫ R

Rh

[Fi sinβi + Fv cosβi]rdr (−ea) (A.2)

where Rh and R are the hub and tip radii.

The efficiency of a wake-adapted propeller is defined
as

η =
T Ṽa
Qω

=
Ja
2π

KT

KQ
(A.3)

where

Ṽa =
1

πR2 − πR2
h

∫ R

Rh

Va(r) 2πr dr (A.4)

is the volumetric mean inflow velocity (which is related
to the average wake fraction). In the case of bollard pull,
Va = 0, Ṽa = 0, and thus η = 0, so another metric must
be used to quantify propeller performance. That metric
is the quality factor.

The quality factor is defined as the ratio of the
propeller efficiency to the theoretically-achievable ideal
efficiency:

QF =
η

ηi
(A.5)

(Woud and Stapersma, 2008). The ideal efficiency of an
actuator disk in uniform inflow of speed Va = Ṽa is

ηi =
2

1 +
√

1 + CTa

=
2

1 +

√
1 +

8KT

πJ2
a

(A.6)

where CTa
= T/( 1

2ρṼ
2
a πR

2) is the thrust coefficient
based on the volumetric mean inflow velocity.
Combining (A.3) and (A.6) with (A.5), the quality factor
can be expressed as

QF =
1

2π

KT

KQ

Ja +

√
J2
a +

8KT

π
2

(A.7)

In the case of bollard pull (Ja = 0), the quality factor
remains non-zero

QF(Ja = 0) =
1

2π

KT

KQ

√
8KT

π
2

(A.8)

Thus, the quality factor is used to quantify the
performance of a propeller at zero or near-zero speeds
of advance.

A.2 Propeller design optimization

As reviewed in (Epps and Kimball, 2013b), the
fundamental propeller design problem is to find the
optimum circulation distribution, Γ, for a given inflow
(Va, Vt) and blade properties (Z, R, ω, c, CD), such
that efficiency (or quality factor) is maximized for a
prescribed thrust. Since a wake-alignment procedure
can be used to determine {V ∗, u∗a, u∗t , βi, ū∗a, ū∗t }
and ultimately {T , Q, η, QF} for a given Γ, this
design optimization problem is to simply find the
optimum Γ distribution. Additional features may be
added, such as chord length optimization, which adds
a layer of complexity to the optimization problem
but does not change the fundamental design problem.
Also, systematic evaluation of the design space can be
performed by varying (Z, R, ω, c, CD) and solving the
mathematical optimization problem for each case.

As part of this investigation, several Γ optimization
strategies were studied, including a random searching
method, a method enforcing the Lerbs criterion, a
method enforcing the Betz condition, and a Lagrange
multiplier method.

A.2.1 Searching methods

Perhaps the most straightforward optimization
method is to consider candidate circulation distributions
that can be formed by a cubic B-spline, which are
defined by a small set of B-spline amplitudes. The B-
spline amplitudes are adjusted iteratively, and given the
resulting circulation distribution, the wake is aligned
and efficiency (or quality factor) evaluated. Adjustments
that increase efficiency are kept, while adjustments that
decrease efficiency are discarded. As it turns out, this
method results in a physically-unrealistic, tip-loaded
circulation distribution (with little circulation over most
of the span and a large loading near the tip), which has
been previously observed by other workers (Kerwin et al,
1986; Brockett and Korpus, 1986, e.g.).

A.2.2 Lerbs Criterion

The Lerbs criterion prescribes that the optimum
propeller satisfies (Lerbs, 1952):

tanβ(r)

tanβi(r)
= constant ·

√
Va(r)

Vs
(A.9)

Since tanβ = Va/(ωr + Vt), (A.9) is equivalent to

tanβi =
Va/(ωr + Vt)

constant ·
√
Va/Vs

∼
√
Va

ωr + Vt

This method fails in the bollard pull case (Va = 0),
since it prescribes tanβi = 0, which requires zero
induced velocities and thus zero circulation. Strictly
speaking, the Lerbs criterion (A.9) is invalid at bollard
pull anyway, since it assumes a lightly loaded propeller
u∗a � Vs, which is not true in the bollard pull case.
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A.2.3 Betz condition

In the case of uniform inflow (Va(r) = constant), the
‘Lerbs criterion’ reduces to the ‘Betz condition’

r tanβi(r) = constant (A.10)

Strictly speaking, the Betz condition is only valid
for lightly loaded propellers, but nevertheless, consider
(A.10) in the limit Va → 0. Definition (2.1) can be
rearranged as follows (in the case Va = Vt = 0)

u∗a − u∗t tanβi = (ωr) tanβi (A.11)

Taking right hand side as constant by (A.10), and upon
inserting (2.9), we arrive at a system of optimization
equations

M∑
n=1

(ū∗a(m,n)− ū∗t (m,n) tanβi(m)) Γ(n) = constant (A.12)

for m=1...M. This forms a system of M equations for
the M unknown Γ(m), which can be solved for any
given value of the constant on the right hand side
(which determines the thrust loading). The solver
can iteratively choose the constant, solve (A.12) and
‘align the wake’ by updating {u∗a, u∗t , βi} until all state
variables have converged to some specified tolerance and
the thrust matches the prescribed thrust. Although
this method technically is not proven to yield optimized
propellers at bollard pull, it serves as a baseline reference
for the Lagrange multiplier method.

A.2.4 Lagrange multiplier method

The Lagrange multiplier method described herein
follows that of (Kerwin, Coney, and Hsin, 1986), which
was previously implemented in codes such as PLL
(Coney, 1989) and OpenProp v2.4.4 (Epps, 2010b).
The problem is to find the set of M vortex panel
circulation values that produce the least torque for a
specified thrust, T = Ts. The method is to form an
auxiliary function, H = Q + λ1(T − Ts), where λ1 is
a Lagrange multiplier, and to find the optimum Γ by
setting the partial derivatives of H to zero

∂H

∂Γ(i)
= 0,

∂H

∂λ1
= 0 (A.13)

In the inviscid case, this system of equations reduces to

∑
m


ū∗a(m,i) rc(m)4rv(m)

+ ū∗a(i,m) rc(i)4rv(i)
+λ1ū

∗
t (m,i)4rv(m)

+λ1ū
∗
t (i,m)4rv(i)

Γ(m)

+

(
[ωrc(i) + Vt(i)]4rv(i)

)
λ1

= −Va(i)rc(i)4rv(i) for i = 1 . . .M

∑
m

(
[ω rc(m) + Vt(m) + u∗t (m)]4rv(m)

)
Γ(m) = Ts/(ρZ)

(A.14)

This is a system of M + 1 non-linear equations for as
many unknowns {Γ(m=1...M), λ1}, which can be solved
iteratively. Each iteration consists of solving (A.14)
to update {Γ, λ1} and then updating {u∗a, u∗t , tanβi,
ū∗a, ū∗t } to ‘align the wake’. Iteration finishes with a
converged set of values that describe the design state.

A.3 Solution methods

Equations (A.14) can be solved in a number of ways.
Coney (1989) linearizes (A.14) into a linearized system
of the form [A] · [Γ;λ1] = [B], as suggested by the
presentation of (A.14). He then iteratively solves for {Γ,
λ1} and then ‘aligns the wake’ by updating the other
parameters {u∗a, u∗t , tanβi, ū∗a, ū∗t }. The new values of
these parameters are then fed back into (A.14), and the
process is repeated. Let us call this numerical method
the ‘linear system’ solver. This method is used in MIT
code PLL, which employs the classical wake model.

This ‘linear system’ solution procedure is tenuous,
since it is prone to crash if the induced velocities do
not vary smoothly over the span. Epps et al (2009b)
overcame this difficulty by smoothing the induced
velocities at the blade root and tip between each solver
iteration. His method is coded in OpenProp v2.4.4,
which employs the classical wake model and the linear
system solver.

For the purposes of this investigation, it was
desired to create an algorithm that did not require the
smoothing employed in OpenProp v2.4.4. As such,
OpenProp v3.1, does not smooth the induced velocities
between solver iterations. Thus, the only difference
between OpenProp v2.4.4 and <OpenProp v3.1 with
the classical wake model and linear system solver> is in
whether or not u∗a and u∗t are smoothed before evaluating
{tanβi(r), ū∗a, ū∗t }.

The main difficulty with the ‘linear system’ solution
procedure is that equations (A.14) are unstable and
depend very sensitively on ū∗a and ū∗t , which are very
sensitive to the inflow angle βi. If tanβi(r) is not smooth
in r, ū∗a and ū∗t amplify this irregularity, (A.14) results
in a Γ(r) distribution that is not smooth in r, and the
procedure breaks down: An irregular Γ(r) yields irregular
u∗a(r) and u∗t (r), which yields an irregular tanβi(r), and
so on until the code crashes.

A more robust approach for solving (A.14) is to
use a Newton solver. In the OpenProp v3.1 Newton
solver formulation, {Γ, u∗a, u∗t , tanβi, λ1} are taken as
the vector of unknowns updated by the Newton solver,
and {ū∗a, ū∗t } are updated between solver iterations
(Epps and Kimball, 2013b). As with the ‘linear system’
method, the ‘Newton solver’ method can be used with
either wake model.
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A.4 Initialization of the numerical procedure

These optimization methods require initialization of
flow parameters {V ∗, u∗a, u∗t , βi} and horseshoe influence
functions {ū∗a, ū∗t } before equation (A.12) or (A.14) can
be solved. A simple initialization method, which works
well for lightly-loaded propellers (u∗a � Va), is to ignore
the induced velocities and initialize as follows {u∗a = 0,
u∗t = 0} from which V ∗ = V0 and βi = β. However, in
the bollard pull design case, Va = 0, and thus β = 0,
rendering this method unusable (since ū∗a → ∞ as
βi → 0).

For any advance speed Va, a better estimate of u∗a can
be obtained from actuator disk theory. The result is well
known and will not be re-derived here. From Bernoulli’s
equation, the thrust produced by the actuator disk is
(Kerwin and Hadler, 2010, eqn. (4.15))

T = ρuw

(
Va +

uw
2

)
πR2 (A.15)

where uw is the axial perturbation velocity far
downstream of the disk, which is related to the induced
velocity at the disk u∗a by uw = 2u∗a. Thus, after non-
dimensionalizing by the ‘reference speed’ Vs, we have

CT =
ρ(2u∗a) (Va + u∗a)πR2

1
2ρV

2
s πR

2
= 4

u∗a
Vs

(
Va
Vs

+
u∗a
Vs

)
(A.16)

In the open-water case (Va = Vs), equation (A.16) can
be solved by quadratic formula to yield the initialization

u∗a
Vs

=
−1 +

√
1 + CT

2
(A.17a)

u∗t
Vs

= 0 (A.17b)

where the tangential induced velocity is initialized to
zero, since it is assumed small (u∗t � Va).

In the bollard pull case (Va = 0), equation (A.16)
simplifies to

u∗a
Vs

=

√
CT

2
(A.18a)

u∗t
Vs

= 0 (A.18b)

where Vs is an arbitrary reference speed (say, 1 m/s).
The tangential induced velocity is again initialized to
zero, such that the wake pitch is initialized as constant

r tanβi = r
u∗a

ωr + u∗t
→ u∗a

ω
= constant

With CT given as one of the design specifications (or
computed from Ts, Vs, and R), equation (A.17) or (A.18)
can be used to initialize u∗a and u∗t . In both cases, {V ∗,
tanβi, ū∗a, ū∗t } are then initialized by definition.
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