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1 Introduction

OpenProp is an open-source code suite that can be used for the design, analysis, and fabrication

of optimized propellers and horizontal-axis turbines. The numerical model is based on propeller

lifting line theory, which is used in parametric design codes employed by the U.S. Navy as well as

commercial designers. OpenProp is written in Matlab M-code, which is widely used in academia

and industry. OpenProp is designed to be a user-friendly tool that can be used by both propeller

design professionals as well as novices to propeller design.

A team of researchers at MIT and Maine Maritime Academy have contributed to the current

OpenProp code. OpenProp began in 2001 with the propeller code PVL developed by Kerwin

(2007) as part of his MIT propeller design course notes. The first Matlab version of this code,

MPVL, incorporated graphical user interfaces for parametric design and preliminary bladerow

design (Chung, 2007). Geometry routines were later added which interfaced with the CAD program

Rhino to generate a 3D printable propeller (D’Epagnier et al, 2007). These early codes were capable

of designing propellers using a simple Lerb’s criteria optimizer routine (Lerbs, 1952). Epps et al

(2009b) implemented Coney’s generalized propeller optimizer (Coney, 1989) and also created a

turbine optimization routine. Epps et al (2009a) created an off-design analysis routine to predict

the performance curve for a given propeller or turbine design. On- and off-design cavitation analysis

capabilities were implemented by Flood (2009). Stubblefield (2008) extended the numerical model

to handle the design of ducted propellers. Epps (2010) presented experimental data validating the

off-design performance analysis feature for the propeller case, but his data showed that further

development is required to accurately predict the off-design performance in the turbine case.

What follows is the theoretical foundation and numerical implementation of the OpenProp

propeller/turbine design code suite. This text is taken from (Epps, 2010, ch. 7), and it draws from

the theory presented in (Coney, 1989), (Kerwin, 2007), (Kerwin and Hadler, 2010), (Abbott and

von Doenhoff, 1959), and (Carlton, 1994). In this document, all equations are given in dimensional

terms, and their non-dimensionalized forms are given in table 1.
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Figure 1: OpenProp information flow chart

OpenProp uses data structures to store the input parameters, design, geometry, and

operating states of a propeller or turbine (bold indicates the names of the data structures). The data

flow is illustrated in figure 1. For a parametric design study the parinput data (range of diameters,

range of rotation rates, etc.) are defined by the user by running a short script. The graphical user

interface (GUI) from OpenProp v1.0 was disabled in developing version 2.4, and a new GUI will

be developed for future versions of the code suite. A Lerb’s criterion design optimization routine is

used to determine the optimum propeller design (and hence the best achievable efficiency) for each

combination of input parameters, and these data are returned in the paroutput data structure.

The user can then select the desired diameter, rotation rate, etc. for a detailed design and analysis

of a single propeller.

For a single propeller design, the input data (diameter, rotation rate, etc.) are defined by the

user by running a short script. The optimizer module determines the optimum propeller design,

for the given inputs. The resulting propeller design can then be analyzed at off-design conditions

(i.e. user-specified tip-speed ratios) in the analyzer to determine off-design operating states. The

crafter can determine the 3D geometry and prepare rapid prototyping files for production of

the propeller. What follows is a description of the propeller optimizer , crafter , and analyzer

modules. The extension of OpenProp to the horizontal axis turbine case is also presented.
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Figure 2: Propeller velocity/force diagram, as viewed from the tip towards the root of the blade.
All velocities are relative to a stationary blade section at radius r.

2 Propeller lifting-line formulation

OpenProp is based onmoderately-loaded lifting line theory, in which a propeller blade is represented

by a lifting line, with trailing vorticity aligned to the local flow velocity (i.e. the vector sum of

free-stream plus induced velocity). The induced velocities are computed using a vortex lattice, with

helical trailing vortex filaments shed at discrete stations along the blade. The blade itself is modeled

as discrete sections, having 2D section properties at each radius. Loads are computed by integrating

the 2D section loads over the span of the blade.

The velocity/force diagram shown in figure 2 illustrates the velocities and forces (per unit span)

on a 2D blade section in the axial ea and tangential et directions. The propeller shaft rotates with

angular velocity ω ea, such that the apparent tangential (swirl) inflow at radius r is −ωret. Also

shown in figure 2 are the axial and tangential inflow velocities, Va = −Vaea and Vt = −Vtet;

induced axial and tangential velocities, u∗a = −u∗aea and u∗t = −u∗tet (note that u∗t < 0 during

normal propeller operation, so u∗t actually points in the et direction, as drawn); and the total

resultant inflow velocity, V∗, which has magnitude

V ∗ =
√

(Va + u∗a)
2 + (ωr + Vt + u∗t )

2 (2.1)

and is oriented at pitch angle,

βi = arctan

(
Va + u∗a

ωr + Vt + u∗t

)
(2.2)

to the et axis. Also shown on figure 2 are the angle of attack, α; blade pitch angle θ = α + βi;

circulation, Γ er; (inviscid) Kutta-Joukowski lift force, Fi = ρV∗ × (Γ er); and viscous drag force,

Fv, aligned with V∗. Assuming the Z blades are identical, the total thrust and torque on the
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propeller are

T = Z

∫ R

rh

[Fi cosβi − Fv sinβi]dr (êa) (2.3)

Q = Z

∫ R

rh

[Fi sinβi + Fv cosβi]rdr (−êa) (2.4)

where Fi = ρV ∗Γ and Fv = 1
2ρ(V ∗)2CDc are the magnitudes of the inviscid and viscous force per

unit radius, ρ is the fluid density, CD is the section drag coefficient, c is the section chord, and rh

and R are the radius of the hub and blade tip, respectively.

The power consumed by the propeller is the product of torque and angular velocity

P = Qω (2.5)

where P > 0 indicates that power is being put into the fluid by the propeller (i.e. the torque

resists the motion). The useful power produced by the propeller is TVs where Vs is the ship speed

(i.e. free-stream speed), so the efficiency of the propeller is

η =
TVs
Qω

(2.6)

2.1 Wake model

Following Kerwin (2007), OpenProp employs a standard propeller vortex lattice model to compute

the axial and tangential induced velocities, {u∗a, u∗t }. In the vortex lattice formulation, a Z-bladed

propeller is modeled as a single representative radial lifting line, partitioned into M panels. A

horseshoe vortex filament with circulation Γ(i) surrounds the ith panel, consisting of helical trailing

vortex filaments shed from the panel endpoints (rv(i) and rv(i+1)) and the segment of the lifting line

that spans the panel. The induced velocities are computed at control points on the lifting line at

radial locations rc(m), m = 1 . . .M , by summing the velocity induced by each horseshoe vortex

u∗a(m) =

M∑
i=1

Γ(i) ū∗a(m,i) (2.7)

u∗t (m) =
M∑
i=1

Γ(i) ū∗t (m,i) (2.8)

where ū∗a(m,i) and ū∗t (m,i) are the axial and tangential velocity induced at rc(m) by a unit-strength

horseshoe vortex surrounding panel i. Since the lifting line itself does not contribute to the induced
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velocity,

ū∗a(m,i) = ūa(m,i+1)− ūa(m,i) (2.9)

ū∗t (m,i) = ūt(m,i+1)− ūt(m,i) (2.10)

where ūa(m,i) and ūt(m,i) are the axial and tangential velocities induced at rc(m) by a unit-strength

constant-pitch constant-radius helical vortex shed from rv(i), with the circulation vector directed

downstream (i.e. away from the lifting line) by right-hand rule. These are computed using the

formulae by Wrench (1957):

For rc(m) < rv(i):

ūa(m,i) =
Z

4πrc
(y − 2Zyy0F1)

ūt(m,i) =
Z2

2πrc
(y0F1)

For rc(m) > rv(i):

ūa(m,i) = − Z2

2πrc
(yy0F2)

ūt(m,i) =
Z

4πrc
(1 + 2Zy0F2)

where

F1 ≈
−1

2Zy0

(
1 + y2

0

1 + y2

)1
4
{

U

1− U
+

1

24Z

[
9y2

0 + 2

(1 + y2
0)1.5

+
3y2 − 2

(1 + y2)1.5

]
ln

∣∣∣∣1 +
U

1− U

∣∣∣∣}

F2 ≈
1

2Zy0

(
1 + y2

0

1 + y2

)1
4
{

1

U − 1
− 1

24Z

[
9y2

0 + 2

(1 + y2
0)1.5

+
3y2 − 2

(1 + y2)1.5

]
ln

∣∣∣∣1 +
1

U − 1

∣∣∣∣}

U =

y0

(√
1 + y2 − 1

)
y
(√

1 + y2
0 − 1

) exp

(√
1 + y2 −

√
1 + y2

0

)Z

y =
rc

rv tanβw

y0 =
1

tanβw

and βw is the pitch angle of the helical vortices in the wake. Consistent with moderately-loaded lifting

line theory, we set βw = βi in order to ‘align’ the wake with the local flow at the blade (Kerwin,

2007).
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2.2 Hubs and ducts

A hub of radius rh is modeled as an image vortex lattice. The image trailing vortex filaments have

equal and opposite strength as the real trailing vortex filaments; they are stationed at radii

rim =
r2
h

rv
(2.11)

and have pitch angle

tan[βimi ] =
rv(1) · tan[βvi (1)]

rim
(2.12)

The image vorticity is shed through the trailing surface of the hub and rolls up into a hub vortex of

radius, ro, and the drag due to the hub vortex is

Dh =
ρZ2

16π

[
ln

(
rh
ro

)
+ 3

]
[Γ(1)]2 (−ea) (2.13)

In OpenProp the default hub radius is rh
ro

= 0.5.

The influence of a duct is also modeled using an image vortex lattice with equal and opposite

strength of the real vortex lattice. For a duct radius rd, the image radii are rim =
r2d
rv
, and the image

pitch angles are defined by tan[βimi ] =
rv(Mp)·tan[βv

i (Mp)]
rim

.

In addition, a duct endowed with circulation will induce axial velocity at the lifting line. The

circulation about the duct Γd is represented by a series of Nd axisymmetric vortex rings of radius

rd equispaced along the duct at axial locations xd(n) for n = 1 . . . Nd. The circulation distribution

is taken to be that of a NACA a=0.8 foil, such that the nth vortex ring has circulation Γd · Γ̄d(n),

and the total circulation of the duct is Γd = Γd ·
∑Nd

n=1 Γ̄d(n). Thus, Γ̄d represents the circulation

distribution for a unit-strength duct. The axial velocity induced at rc(m) by a unit-strength duct is

ū∗a,d(m) =

Nd∑
n=1

Γ̄d(n)ūa,d(m,n) (2.14)

where ūa,d(m,n) is the axial velocity induced at at (x = 0, rc(m)) by a unit-strength vortex ring at

x = xd(n), which is given in terms of complete elliptic integrals in (Stubblefield, 2008, p. 22). Thus,

the axial velocity induced at rc(m) by duct with circulation Γd is

u∗a,d(m) = Γd · ū∗a,d(m) (2.15)

In the case of a hub or duct (or both), the horseshoe influence functions (ū∗a, ū∗t ) are modified to

include the influence of the image vortex lattices, and the axial induced velocity (2.7) is redefined
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to include the flow induced by the duct circulation

u∗a(m) =
M∑
i=1

Γ(i) ū∗a(m,i) + Γd ū
∗
a,d(m) (2.16)

u∗t (m) =
M∑
i=1

Γ(i) ū∗t (m,i) (2.17)

Note that the tangential induced velocity (2.8) is unaffected by the presence of a constant-radius

duct. This model breaks down in the case of a converging duct, since by conservation of angular

momentum, the tangential (swirl) velocity must increase as the flow contracts. A more sophisticated

model must be used to accurately model the flow through a converging-ducted propulsor.

The thrust produced by the duct can be computed in terms of the axial and radial circumferential

mean velocities induced on the duct by the propeller, uda and udr , as follows

Td = 2πrd ·
Nd∑
n=1

(
ρ
[
− udr (n)

]
Γd Γ̄d(n)− 1

2ρ
[
V d
a + uda(n)

]2
CD,d

cd
Nd

)
(2.18)

where udr (n) is the radial velocity induced at (xd(n), rd) by the propeller, CD,d is the two-dimensional

section drag coefficient, and cd is the chord length of the duct. Note that this equation is written

incorrectly in (Coney, 1989) and (Stubblefield, 2008). The circumferential mean velocities are also

written incorrectly in (Coney, 1989) and (Stubblefield, 2008) but can be found in (Hough, 1964).



OpenProp v2.4 Theory Document 8

3 Propeller design optimization

The performance of a propeller can be computed given the circulation distribution, Γ, and flow

parameters {V ∗, βi, u∗a, u∗t , ū∗a, ū∗t }. These all must be self-consistent for the state to be physically

realistic. That is, equations {(2.1), (2.2), (2.16), (2.17), (2.9), (2.10)} must all hold, given Γ. Thus,

propeller design optimization reduces to finding the optimum circulation distribution.

Following Coney (1989), the propeller optimization problem is to find the set of M circulations

of the vortex lattice panels that produce the least torque

Q = ρZ
M∑
m=1

{
[Va + u∗a]Γ + 1

2V
∗CDc[ωrc + Vt + u∗t ]

}
rc4rv (3.1)

for a specified thrust, Ts,

T = ρZ

M∑
m=1

{
[ωrc + Vt + u∗t ]Γ− 1

2V
∗CDc[Va + u∗a]

}
4rv

−Hflag · ρZ
2

16π

[
ln
(
rh
ro

)
+ 3
]

[Γ(1)]2 = Ts (3.2)

where Hflag is set to 1 to model a hub or 0 for no hub. Here, {ρ, Z, ω} are constants and {Γ, u∗a,

u∗t , V ∗, c, Va, Vt, CD, rc, 4rv} are evaluated at rc(m) in the summation. In the case of a ducted

propeller optimization, the propeller only provides a portion of the total required thrust, Tr. The

thrust ratio is defined as

τ =
Ts
Tr

=
propeller thrust
total thrust

(3.3)

such that the thrust required of the duct is Td = (1− τ)Tr and the total thrust is Tr = Ts + Td. In

the case of no duct, τ = 1, Td = 0, and Ts = Tr.

To solve this optimization problem, Coney (1989) employs the method of the Lagrange multiplier

from variational calculus. He forms an auxiliary function, H = Q + λ1(T − Ts), where λ1 is the

unknown Lagrange multiplier that introduces the thrust constraint (3.2). Clearly, if T = Ts, then

a minimum H coincides with a minimum Q. To find this minimum, the derivatives with respect to

the unknowns are set to zero

∂H

∂Γ(i)
= 0 for i = 1 . . .M (3.4)

∂H

∂λ1
= 0 (3.5)

which is a system ofM+1 equations for as many unknowns {Γ(i=1...M), λ1}. This non-linear system
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of equations is solved iteratively until convergence of the optimized circulation distribution, Γ, and

flow parameters {V ∗, βi, u∗a, u∗t , ū∗a, ū∗t }.

The section chord length, c, can also be optimized . Equation (3.1) shows that minimizing c

minimizes the parasitic torque due to viscous drag. However, since c is related to the loading by

CL = Γ
1
2

(V ∗)c
, where CL is the section lift coefficient, the chord cannot be made arbitrarily small. If

a maximum allowable lift coefficient is chosen, (typically, 0.1 < CLmax < 0.5), then the “optimum"

chord is

ĉ =
|Γ|

1
2(V ∗)CLmax

(3.6)

In OpenProp v2.4, the expanded area ratio EAR can also be specified to be EARspec. Expanded

area ratio is defined as

EAR = Z
∫ R

rh

ĉ(r) dr (3.7)

If the specification is given, then the chord length distribution is scaled as follows

c(r) = ĉ(r)
EARspec
EAR

(3.8)

Otherwise, the chord length distribution is set from equation (3.6), as c(r) = ĉ(r).

Turning our attention back to equations (3.4) and (3.5), we can now evaluate the required partial

derivatives of Γ, λ1, u
∗
a, u
∗
t , and V ∗ with respect to Γ(i) and λ1:

∂Γ(m)

∂Γ(i)
=


0 (m 6=i)

1 (m=i)

,
∂λ1

∂λ1
= 1 (3.9)

∂u∗a(m)

∂Γ(i)
= ū∗a(m,i) ,

∂u∗t (m)

∂Γ(i)
= ū∗t (m,i) (3.10)

∂V ∗(m)

∂Γ(i)
= 1

2(V ∗)−1

 2(Va + u∗a)
∂u∗a(m)
∂Γ(i) +

2(ωrc + Vt + u∗t )
∂u∗t (m)
∂Γ(i)


= sin(βi(m)) ū∗a(m,i) + cos(βi(m)) ū∗t (m,i) (3.11)

All other partial derivatives are zero or are ignored. In OpenProp v2.4, since expanded area ratio

may be specified, chord length is no longer directly related to circulation, so the partial derivative
∂c(m)
∂Γ(i) is ignored.
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The system of equations {(3.4), (3.5)} is non-linear, so the following iterative approach is used to

solve them. During each solution iteration, flow parameters
{
u∗a, u

∗
t , ū
∗
a, ū
∗
t , V

∗, ∂V
∗

∂Γ , λ1

}
are frozen

in order to linearize {(3.4), (3.5)}. The linear system of equations, with the linearized unknowns

marked as {Γ̆, λ̆1}, is as follows

∂H

∂Γ(i)
= ρZ

M∑
m=1

Γ̆(m) · [ū∗a(m,i)rc(m)4rv(m) + ū∗a(i,m)rc(i)4rv(i)]

+ ρZVa(i)rc(i)4rv(i)

+ ρZ
M∑
m=1

1
2CD

∂V ∗(m)
∂Γ(i) c(m)[ωrc(m) + Vt(m) + u∗t (m)]rc(m)4rv(m)

+ ρZ

M∑
m=1

1
2CDV

∗
(m)c(m)[ū∗t (m,i)]rc(m)4rv(m)

+ ρZλ1

M∑
m=1

Γ̆(m) · [ū∗t (m,i)4rv(m) + ū∗t (i,m)4rv(i)]

+ ρZλ̆1[ωrc(i) + Vt(i)]4rv(i)

− ρZλ̆1

M∑
m=1

1
2CD

∂V ∗(m)
∂Γ(i) c(m)

[
Va(m) + u∗a(m)

]
4rv

− ρZλ̆1

M∑
m=1

1
2CDV

∗
(m)c(m)[ū∗a(m,i)]4rv

−Hflag · ∂Γ(1)

∂Γ(i)
· λ1

ρZ2

8π

[
ln

(
rh
ro

)
+ 3

]
Γ̆(1)

= 0 for i = 1 . . .M (3.12)

∂H

∂λ1
= ρZ

M∑
m=1

Γ̆(m) · [ω rc(m) + Vt(m) + u∗t (m)]4rv(m)

− ρZ
M∑
m=1

1
2CDV

∗
(m)c(m)[Va(m) + u∗a(m)]4rv(m)

−Hflag · ρZ
2

16π

[
ln

(
rh
ro

)
+ 3

]
Γ(1) · Γ̆(1)

− Ts

= 0 (3.13)
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The system {(3.12), (3.13)} is solved for the now linear {Γ̆, λ̆1}, the circulation and Lagrange

multiplier are updated (Γ = Γ̆, λ1 = λ̆1), and the new Γ is used to update the flow parameters.

Coney (1989) describes a ‘wake alignment procedure’ for updating the flow parameters, whereby

he iteratively updates: (1) the induced velocities {u∗a, u∗t } via {(2.16), (2.17)}; (2) the inflow angle

βi via (2.2); and (3) the horseshoe influence functions {ū∗a, ū∗t } via {(2.9), (2.10)}, and iteration

continues until convergence of these flow parameters. Given the now-aligned wake, he then updates

the remaining flow parameters
{
V ∗, ∂V

∗

∂Γ , c
}
and continues the main iterative loop, finding the next

guess for Γ. This wake alignment procedure is time-consuming and tenuous, because it is prone to

crash if the induced velocities do not vary smoothly over the span.

A slightly different optimization procedure was implemented by Epps et al (2009b) in

OpenProp. This implementation still solves {(3.12), (3.13)} for a guess for {Γ̆, λ̆1}, updates

the circulation and Lagrange multiplier (Γ = Γ̆, λ1 = λ̆1), and uses the new Γ to update the flow

parameters. However, in this procedure, the wake is not iteratively “aligned"; instead, one new

guess is made for the wake flow parameters (in particular βi), and the main iterative loop continues

to find the next guess for Γ. Therefore, each iteration of the main loop involves updating Γ via

{(3.12), (3.13)}. The critical step in the procedure is that {u∗a, u∗t } are updated via {(2.16), (2.17)}

and then “repaired" by smoothing the velocities at the blade root and tip. This minor smoothing is

critical to enable the entire system of equations to converge, because the alignment of the wake and

the horseshoe influence functions which are fed into the next solution iteration are very sensitive

to irregularities in the induced velocities. This smoothing is reasonable in the vortex-lattice model,

since it introduces no more error than ignoring hub or tip vortex roll-up, or other flow features. Using

these smooth induced velocities, the remaining flow parameters
{
βi, ū

∗
a, ū
∗
t , V

∗, ∂V
∗

∂Γ , c
}
are updated

via {(2.2), (2.9), (2.10), (2.1), (3.11), (3.6)}. This process is repeated until convergence of all of

the flow parameters, yielding an optimized circulation distribution and a physically-realistic design

operating state. Initial values of
{
βi, V

∗, ∂V
∗

∂Γ

}
are computed with {u∗a, u∗t } = 0. The Lagrange

multiplier is initialized at λ1 = −R, and the section chord lengths at c ≈ 0. If chord-length

optimization is not desired, then the chord is set to the input value during the optimization process.
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4 Propeller geometry

Once the design operating state of the propeller/turbine is known, the geometry can be determined

to give such performance. The 3D geometry is built from given 2D section profiles that are scaled

and rotated according to the design lift coefficient, chord length, and inflow angle {CL0 , c, βi0}.

A given 2D section profile includes camber and thickness normalized by the chord, {f̃/c, t̃/c},

ideal angle of attack, α̃I , and ideal lift coefficient, C̃LI
. Note that {f̃ , α̃I , C̃LI

} scale linearly with

the maximum camber, f̃0 (Abbott and von Doenhoff, 1959). The section lift coefficient is given in

terms of the geometry by CL = 2π(α−αI) +CLI
for |α−αI | � |α−αI |stall, and the stall model is

described in Section 5. In the geometry module, the angle of attack of each blade section is set to

the ideal angle of attack (α = αI) to prevent leading edge flow separation and/or cavitation. The

lift coefficient then becomes the ideal lift coefficient (CL = CLI
). In order to achieve the desired

lift coefficient, CL0 , the given C̃LI
is scaled by scaling the section camber. Thus, the desired lift

coefficient and section geometry is

{CL, f0, f, αI} =
CL0

C̃LI

· {C̃LI
, f̃0, f̃ , α̃I} (4.1)

The pitch angle of the blade section is then fixed at

θ = αI + βi0 (4.2)

With this computed blade 2D section geometry, OpenProp can then form the full 3D propeller

geometry and export files for rapid prototyping of physical parts.

5 Off-design performance analysis

This section details the analysis of a propeller operating at an off-design (OD) advance coefficient

Js,OD =
Vs

nODD
=

πVs
ωODR

(5.1)

Following Epps (2010), an off-design operating state is defined by the rotation rate, ωOD, and

unknown flow parameters {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t , Γd}, which all must be self-consistent

for the state to be physically realistic. To proceed, we need equations for the angle of attack, α, lift

coefficient, CL, circulation, Γ, and duct circulation Γd. In the analyzer, the pitch angle, θ, of each
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blade section is fixed, so the net angle of attack is

α− αI = βi0 − βi (5.2)

The circulation is computed from the 2D lift coefficient, which is given in terms of the loading by

CL =
2Γ

V ∗c
(5.3)

The 2D section lift and drag coefficients are shown in figure 3 and given in closed form by equations

CL = CL,0 + dCL
dα ∆α

− dCL
dα (∆α−∆αstall) · F (∆α−∆αstall)

+ dCL
dα (−∆α−∆αstall) · F (−∆α−∆αstall) (5.4)

CD = CD,0

+A · (∆α−∆αstall) · F (∆α−∆αstall)

+A · (−∆α−∆αstall) · F (−∆α−∆αstall)

− 2A · (−∆αstall) · F (−∆αstall) (5.5)

where the auxiliary function F (x) = arctan(Bx)
π + 1

2 has limits F (x→ −∞)→ 0 and F (x→∞)→ 1.

Here: ∆α = α− αI [rad]; ∆αstall = 8 π
180 [rad] is the default OpenProp stall angle; B = 20 is the

default OpenProp stall sharpness parameter; A =
2−CD,0
π
2−∆αstall

is drag coefficient post-stall slope; and
dCL
dα = 2π is default OpenProp lift curve slope, which is consistent with linear foil theory. These

values are used in all calculations unless specifically noted otherwise. Thus CL ≈ CL,0 + 2π(α−αI)

before stall and approximately constant post stall. The drag coefficient is approximately constant

until stall and then rises to the canonical value of 2 when the inflow is normal to the blade. This

type of model is used in ASWING (Drela, 1999). Equations (5.4) and (5.5) offer the flexibility to

change the stall angle, lift curve slope, and drag coefficient to more accurately model foil sections

of moderate thickness to chord ratios.

If a duct is present, a system of equations analogous to (5.2), (5.4), (5.3) must also hold true for

the duct circulation, as will be discussed.

The operating states of a propeller or turbine for each given ωOD are computed as follows. An

operating state is defined by ωOD and unknown flow parameters {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t ,

Γd}, which all must be self-consistent for the state to be physically-realistic. That is, equations

{(2.1), (5.2), (5.4), (5.3), (2.16), (2.17), (2.2), (2.9), (2.10), (5.10)} must all hold, given ωOD. Since
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Figure 3: Lift coefficient, CL, and drag coefficient, CD, versus net angle of attack, α − αI , for the
(a) propeller and (b) turbine cases, with dCL

dα = 2π and on-design specifications CL0 = 0.5 and
CD0 = 0.05. The vertical dashed lines at |α− αI |stall = ±8 deg indicate the stall angle of attack.

there are M vortex panels, there are 7M + 2M2 + 1 unknowns and a system of 7M + 2M2 + 1

non-linear equations that govern the state of the system. This system is solved in OpenProp using

an approach similar to a Newton solver.

Since the 7M +2M2 +1 equations are coupled through the parameters {βi, ū∗a, ū∗t ,Γd}, they can

be decoupled by considering two state vectors: X = {V ∗, α, CL,Γ, u∗a, u∗t }> andY = {βi, ū∗a, ū∗t ,Γd}.

During each solution iteration, state vector X is updated, and then Y is updated; this process

repeats until convergence of the entire system.

Consider state vectorX: It consists ofM sets of 6 state variables, one set per vortex panel. The 6

variables for each vortex panel are coupled to one another, but not to the other variables inX. Thus,

X can be partitioned intoM state vectors, X = {x1, . . . ,xM}>, where xm = {V ∗, α, CL,Γ, u∗a, u∗t }>

with each variable evaluated at rc(m). Each of these state vectors can be updated independently.

Each vortex panel state vector, xm, is updated using a Newton solver. Define the residual vector

for the mth panel as

Rm =



V ∗ −
√

(Va + u∗a)
2 + (ωODrc + Vt + u∗t )

2

α − (αI + βi0 − βi)

CL − CL(α)

Γ −
(

1
2CLV

∗c
)

u∗a −
(

[ū∗a] · [Γ] + Γdū
∗
a,d

)
u∗t −

(
[ū∗t ] · [Γ]

)


(5.6)

where each variable is evaluated at rc(m). In order to drive the residuals to zero, the desired change
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in the state vector, dxm, is found by solving the matrix equation

0 = Rm + Jm · dxm

where non-zero the elements of the Jacobian matrix, Jm(i,j) = ∂Rm(i)
∂xm(j) , are

Jm(i,i) =
∂RV ∗

∂V ∗
=
∂Rα
∂α

=
∂RCL

∂CL
=
∂RΓ

∂Γ
=
∂Ru∗a
∂u∗a

=
∂Ru∗t
∂u∗t

= 1 (i = 1 . . . 6)

Jm(1,5) =
∂RV ∗

∂u∗a
= − Va + u∗a√

(Va + u∗a)
2 + (ωODrc + Vt + u∗t )

2

Jm(1,6) =
∂RV ∗

∂u∗t
= − ωODr + Vt + u∗t√

(Va + u∗a)
2 + (ωODrc + Vt + u∗t )

2

Jm(2,5) =
∂Rα
∂u∗a

=
∂Rα
∂βi

· ∂βi
∂ tan(βi)

· ∂ tan(βi)

∂u∗a
=

1

1 + tan2(βi)
· 1

ωODrc + Vt + u∗t

Jm(2,6) =
∂Rα
∂u∗t

=
∂Rα
∂βi

· ∂βi
∂ tan(βi)

· ∂ tan(βi)

∂u∗t
=

1

1 + tan2(βi)
· − tan(βi)

ωODrc + Vt + u∗t

Jm(3,2) =
∂RCL

∂α
= −dCL(α)

dα

Jm(4,1) =
∂RΓ

∂V ∗
= −1

2CLc

Jm(4,3) =
∂RΓ

∂CL
= −1

2V
∗c

Jm(5,4) =
∂Ru∗a
∂Γ

= −ū∗a(m,m)

Jm(6,4) =
∂Ru∗t
∂Γ

= −ū∗t (m,m)

Jm(5,2) =
∂Ru∗a
∂α

=
∂Ru∗a
∂βi

· ∂βi
∂α

=

M∑
j=1

Γ(j)
∂ū∗a(m,j)

∂βi(m)

Jm(6,2) =
∂Ru∗t
∂α

=
∂Ru∗t
∂βi

· ∂βi
∂α

=
M∑
j=1

Γ(j)
∂ū∗t (m,j)

∂βi(m)

where the flow parameters are evaluated at rc(m) unless explicitly stated. All other terms are zero

or are ignored.

The state vector for the next iteration, then, is xnext
m = xcurrent

m + dxm. By solving one Newton

iteration for each of the m = 1, . . . ,M vortex panels, state vector X = {x1, . . . ,xM}> is updated.

Given the new X values, Y is updated: βi is updated via (2.2), and then {ū∗a, ū∗t } are updated

via {(2.9), (2.10)}. In the next solution iteration, these new values of Y are used to update X,

and so on. Since the solution scheme updates both X and Y in each iteration, it accounts for

the coupled interaction between all 7M + 2M2 + 1 unknown flow parameters and converges on a

physically-realistic operating state of the system.

For off-design analysis of a ducted propeller, the duct circulation Γd is unknown and is estimated
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in a manner similar to that used to update the propeller blade circulation. After each iteration of

the Newton solver, the circumferential mean velocities are evaluated at the quarter chord position

of the duct. Since the propeller plane (x = 0) is located at the midchord of the duct, the quarter

chord is at x = −cd/4. Thus, the desired velocities are ũda = uda(x = −cd/4, r = rd) and ũdr =

udr(x = −cd/4, r = rd). The total inflow speed at the duct quarter chord is

Ṽ ∗ =
√

(V d
a + ũda)

2 + (ũdr)
2 (5.7)

The inflow angle at the quarter chord is

β̃i = arctan

(
−ũdr

V d
a + ũda

)
(5.8)

The 2D lift coefficient (i.e. lift per unit circumference) for the duct becomes

CL,d = dCL
dα · (β̃i0 − β̃i) + CL,d0 (5.9)

where β̃i,0 and CL,d0 are the inflow angle and lift coefficient on design, respectively, and dCL
dα = 2π

is the lift curve slope. The duct circulation then is

Γd = 1
2 Ṽ
∗cdCL,d (5.10)

Since all of these equations can be computed explicitly from any given guess of state vector X,

this procedure to estimate Γd can be done between Newton solver iterations. Given the new guess

for Γd, the axial induced velocity at the propeller u∗a will change, as shown in residual equation

(5.6). Since the new value of Γd is used in the next Newton solver iteration, the coupled interaction

between Γd and the remaining unknown flow parameters is accounted for.

The system is said to converge when all 6M elements of X have converged. Since βi is directly

related to α and ū∗a and ū∗t are functions of βi, once α converges, this implies that Y has converged

as well. For each operating state, the analyzer computes the propeller/turbine thrust, torque, and

power coefficients and efficiency.

The OpenProp analyzer was validated with U.S. Navy propeller 4119. Figure 4a shows the

circulation distribution of an OpenProp-designed version of 4119, showing good agreement with

U.S. Navy code PBD and experimental data from (Black, 1997). Figure 4b also shows good

agreement between the off-design performance curve predicted by OpenProp and experimental

data from (Black, 1997), thus validating the performance analysis method presented herein.
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Figure 4: (a) Design circulation distribution for U.S. Navy propeller 4119, and (b) off-design
performance curves for propeller 4119. OpenProp results agree with PBD code solution and
experimental data from (Black, 1997).

The performance analyzer also enables cavitation analysis, which requires the blade surface

pressure distribution. The pressure distribution is computed in OpenProp using either of two 2D

foil solvers that require the lift coefficient distribution. The lift coefficient distribution is found in

the analyzer for each off-design operating state. Peterson (2008) developed a cavitation analysis

module using the open-source code XFOIL (Drela, 1989). Chung (2007) implemented a simpler 2D

vortex lattice code that can also be used as the 2D foil solver engine. The pressure distribution

results are incorporated in a module that generates Brockett diagrams for a given blade design and

off-design operating state. Using the Brockett diagram, the thickness ratio can be chosen to give

adequate on-design cavitation margin and off-design angle of attack margin. The 2D solvers can

also be used to analyze the blade pressure coefficient distributions for determining cavitation margin

and location by comparing the pressure coefficient to the local cavitation number of the section.

5.1 Example propeller off-design analysis

As an illustrative example of off-design performance analysis, I now replicate the propellers designed

in Coney (1989, p. 28-31). In this exercise, several propellers are designed to give the same thrust

coefficient, CT = 0.512, for a range of design advance coefficients

Js =
Vs
nD

=
πVs
ωR

Each is a hubless, five-bladed propeller with a diameter D = 1 m, hub diameter Dhub = 0.2 m, and

ship speed Vs = 1 m/s. The chord lengths are optimized for each propeller, with CL,max = 0.2, and
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Figure 5: Example 5-bladed propellers from Coney (1989): (a) on-design circulation distributions for
propellers designed for selected advance coefficients, (b) off-design performance of these propellers,
(c) off-design circulation distributions for the propeller with on-design advance coefficient Js = 1.2:
(d) off-design circulation distributions each normalized by its maximum value.

viscous effects are ignored.

Each of the circulation distributions in figure 5a were optimized to give the same thrust, for the

prescribed advance coefficient. The distributions I computed using OpenProp agree well with those

computed by Coney; minor disagreement is expected, since Coney did not align the wake to the local

flow (i.e. he computed the wake influence functions with the wake aligned to the undisturbed flow,

which is acceptable for lightly-loaded propellers such as these). The on-design efficiencies computed

by Coney also agree well with those I calculate, as shown in figure 5b.

Using my off-design performance analyzer, I computed the performance of each of these

propellers for a range of advance coefficients. I show in figure 5b the off-design efficiency, EFFY,

and thrust coefficient, KT, of all these propellers; the torque coefficient is omitted for clarity. The

black dash-dotted line represents the efficiency of an actuator disc producing a thrust coefficient of

CT = 0.512, which is

EFFY =
2

1 +
√

1 + CT
= 0.8970 (5.11)

Propellers designed for advance coefficients approaching zero approach the actuator disk efficiency,



B. P. Epps 19

since the rotation rate approaches infinity in this limit, and the blades lose their identity and

‘become’ the actuator disk. The magenta dashed line represents the required thrust coefficient, for

a given advance ratio, since

KT =
π

8
CT · J2

s (5.12)

by definition. Each of the propellers meets this thrust requirement on-design, and they produce

larger KT for smaller off-design Js, and visa versa. This change in loading is due to the change in

net angle of attack: Referring to the propeller velocity/force diagram, figure 2, recall the raw inflow

angle is defined as

tanβ =
Vs
ωr

=
Js
π
· R
r

(5.13)

For small off-design Js, the apparent tangential inflow due to propeller rotation is larger, and the

inflow angle is smaller. This corresponds to an increased angle of attack (since the blade pitch is

fixed) and, therefore, increased loading. Figure 5c shows the load distribution for several off-design

advance coefficients for the propeller designed for Js = 1.2; loading increases as Js decreases, and

visa versa. For larger off-design Js, this corresponds to larger inflow angles, reduced angle of attack,

and reduced loading.

Consideration of equation (5.13) reveals that a change in advance coefficient should affect the

innermost blade sections more than the outermost sections, since R
r increases with decreasing radial

position r. Thus, the off-design circulation distribution should shift inwards for lower advance

coefficients (i.e. higher rotation rates) and shift outwards for higher advance coefficients. This is

demonstrated in figure 5, which shows the off-design circulation distributions, each normalized by

its maximum value. This effect is minimal for low advance coefficients but is quite dramatic for

higher advance coefficients, which tend to unload the root more than the tip, shifting the circulation

distribution outboard.
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Figure 6: Turbine velocity/force diagram, as viewed from the tip towards the root of the blade. All
velocities are relative to a stationary blade section at radius r.

6 Turbine lifting-line representation

This section demonstrates that a turbine can be represented in the propeller lifting line formulation

of Section 2 simply by allowing a negative circulation, Γ < 0, and other associated sign changes. If

Γ < 0, then {Fi = ρV ∗Γ, CL, u
∗
a, u
∗
t , f0, α} < 0 as well, via equations {(5.3), (2.16), (2.17), (4.1)}.

Figure 6 shows the turbine velocity/force diagram, with {Γ, Fi, f0, α, u
∗
a} < 0 and u∗t > 0 as

drawn. Since u∗a < 0, u∗a points in the ea direction (as drawn). In this case, the turbine still rotates

with angular velocity ωea, but the direction of the circulation is reversed (as drawn). This amounts

to |Γ|(−er) = Γ er with Γ < 0.

With, {Γ, Fi} < 0 but Fv always positive, the thrust and torque acting on the turbine are

T = Z

∫ R

rh

[|Fi| cosβi + Fv sinβi]dr (−ea) (as drawn)

= Z

∫ R

rh

[Fi cosβi − Fv sinβi]dr (ea) (eqn. 2.3)

Q = Z

∫ R

rh

[|Fi| sinβi − Fv cosβi]rdr (ea) (as drawn)

= Z

∫ R

rh

[Fi sinβi + Fv cosβi]rdr (−ea) (eqn. 2.4)

The fluid dynamic power of the turbine acting on the fluid is still

P = Qω (eqn. 2.5)

but since Q < 0 for the turbine case, P < 0, indicating that power is being extracted from the fluid

by the turbine.

The geometry of a turbine is also correctly handled when Γ < 0. In this case, the 2D section
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lift coefficient

CL =
Fi

1
2ρ(V ∗)2c

=
2Γ

(V ∗)c
(5.3)

is also negative, and this carries through to negative values of the camber and angle of attack via

{CL, f0, f, αI} =
CL0

C̃LI

· {C̃LI
, f̃0, f̃ , α̃I} (4.1)

where CL0 is the on-design lift coefficient, which is negative.

In summary, the thrust, torque, and power are correctly predicted by equations (2.3), (2.4),

and (2.5) when Γ < 0 for the turbine. Furthermore, since {u∗a, u∗t , CL, f0, α} depend linearly on the

circulation, these parameters are also correctly handled when Γ < 0. Therefore, the same lifting

line code can be used for both the propeller and turbine cases!

7 Turbine design optimization

7.1 Simple turbine optimization scheme

One might formulate the turbine optimization problem as follows: Find the set of M circulations

of the vortex lattice panels that produce the least torque (i.e. the most negative torque, giving

the largest power extraction at the specified rotation rate). In other words, solve the propeller

optimization problem, {(3.4),(3.5)}, with no thrust constraint. For simplicity, consider the inviscid

flow case, CD = 0. In this formulation, the system of equations for minimizing torque (3.12)

becomes:

0 =
∂Q

∂Γ(i)
= ρZ

M∑
m=1

Γ(m) ·

 ū∗a(m,i)rc(m)4rv(m)+

ū∗a(i,m)rc(i)4rv(i)


+ ρZVa(i)rc(i)4rv(i) (for i = 1 . . .M) (7.1)

Figure 7a shows that this scheme does not yield the largest power extraction possible (i.e.

this scheme does not reproduce actuator disc theory). In this figure, a series of turbines were

“optimized" by solving (7.1), and the power coefficients of these turbines are plotted against their

tip-speed ratios. The theoretical maximum power extraction at these tip-speed ratios is given by

actuator-disc-with-swirl-and-viscous-losses (ADS) theory (?), which is shown as a solid black line

in figure 7a. Clearly, “optimization" by solving equations (7.1) does not reproduce actuator-disc-

with-swirl theory. However, turbines may be designed to replicate ADS theory using an ADS-based

optimizer, as discussed in the following section. In this example, CD = 0, Z = 80, and the axial
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Figure 7: (a) Power coefficient, CP , versus tip speed ratio, λ = ωR
Vs

, for turbines “optimized"
by solving the system of equations (7.1). Optimization by solving equations (7.1) does not
reproduce actuator-disc-with-swirl theory (black line), whereas using the actuator-disk-with-swirl-
based optimizer (7.2) does. Here, CD = 0 and Z = 80. (b) Circulation G = Γ

2πRVs
versus radius for

the turbines optimized for λ = 5. (c) Induced velocities {u
∗
a
Vs
,
u∗t
Vs
} for the simple optimizer (7.1). (d)

Induced velocities {u
∗
a
Vs
,
u∗t
Vs
} for the actuator-disk-based optimizer (7.2).

inflow is Va
Vs

= 1 for all blade sections.

The question is: why does the system of equations (7.1) under-perform actuator disk theory?

Figures 7b, 7c, and 7d show the reason for the under-performance of the (7.1) scheme. Optimizer

(7.1) produces turbines that induce axial velocity u∗a
Vs

= u∗a
Va
≈ −1

2 (as shown in figure 7c), whereas

actuator disk theory prescribes u∗a
Va

= −1
3 for maximum power extraction. Equations (7.1) do

not yield turbines that extract as much power from the flow as ADS theory predicts, because

solving (7.1) yields a circulation distribution which induces too much axial induced velocity, thereby

reducing the flow rate through the turbine more than it should, resulting in less power available

for extraction. For comparison, my ADS-based optimizer (7.2) produces turbines that induce axial

velocity u∗a
Vs
≈ −1

3 (as shown in figure 7d), which is why the power produced by these turbines

replicates that of ADS theory.

To deduce the under-performance of (7.1) mathematically, note that the horseshoe influence

matrices {ū∗a, ū∗t } are dominated by their diagonal terms. To the leading order, the influence
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functions and induced velocities behave like

ū∗a(m,i) ≈


0 (m 6= i)

ū∗a(i,i) (m = i)

u∗a(i) ≈ Γ(i)ū∗a(i,i)

With these approximations, it is evident that the system of equations (7.1) behaves like M

independent equations (i = 1 . . .M)

0 = ρZ · Γ(i) · [2 ū∗a(i,i)rc(i)4rv(i)]

+ ρZVa(i)rc(i)4rv(i)

which are each satisfied when

u∗a(i) = −1
2Va(i)

This result is consistent with the example induced velocity distribution shown in figure 7c, as

discussed above. In short, the simple turbine optimization scheme (7.1) under-performs actuator

disk theory, because solving (7.1) yields a circulation distribution which induces too much axial

velocity. Physically, this results in a smaller flow rate through the turbine than actuator disk theory

suggests and too little power available for extraction.

7.2 Improved, actuator-disk-based optimization scheme

Epps et al (2009b) created an actuator-disk-based turbine optimization procedure, which is

formulated as follows. The procedure is a vortex-lattice adaptation of actuator-disc-with-swirl-

and-viscous-losses (ADS) theory (Stewart, 1976). During the design optimization, flow parameters

{Γ, u∗a, u∗t , ū∗a, ū∗t , βi} must be self consistent to define a physically-realistic operating state of the

turbine. That is, equations {(2.16), (2.17), (2.9), (2.10), (2.2)} must hold, given Γ.

In the present optimization scheme, the tangential induced velocity is set to the actuator disc

with swirl (ADS) value

u∗t ≡ u∗t,ADS (7.2)

The remaining flow parameters {Γ, u∗a, ū∗a, ū∗t , βi} are determined iteratively. Initially setting u∗a =

u∗a,ADS allows one to start a loop that computes βi via (2.2), then {ū∗a, ū∗t } via {(2.9), (2.10)}. Then,
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Figure 8: (a) Power coefficient, CP = P/1
2ρV

3
∞πR

2, versus tip speed ratio, λ = ωR
V∞

, for optimized
turbines. The CP of turbines designed with 100 blades agrees quite well with actuator-disc-with-
swirl-and-viscous-losses theory (Stewart, 1976), as shown for three CD/CL ratios. Performance data
of 3-bladed wind turbines in service, digitized from (Kahn 2006), is also shown for reference. (b)
Power coefficients of 3-bladed and 100-bladed turbines converge for high tip speed ratios (λ > 25),
as expected.

the circulation distribution can then be determined by solving the matrix equation

[ū∗t ] · [Γ] = [u∗t,ADS ]

for Γ. Finally, u∗a is computed via (2.16), and the loop restarts. Iteration continues until every state

variable has converged.

The performance of several turbines optimized using this scheme is shown in figure 8. Using

this scheme (7.2), one can reproduce the CP vs. λ performance curves from ADS theory (Stewart,

1976), as shown by the (essentially infinite-bladed) Z = 100 curves in figure 8a. An additional check

that this scheme works correctly, which is shown in figure 8b, is that for very high tip speed ratios

(λ > 25), each of the Z = 3 curves asymptotes to its corresponding Z = 100 curve, as expected.

7.3 Chord length optimization

During the circulation optimization procedure, the chord, c, can chosen in order to restrict the lift

coefficient to a given maximum allowable absolute value, CLmax , such that

CL = CLmax ·
Γ

|Γ|
(7.3)

c =
2|Γ|

(V ∗)CLmax

(7.4)
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Figure 9: Power coefficient, CP , versus off-design tip speed ratio, λ, for a turbine designed to operate
at λD = 5, with specifications CD = 0.01 and Z = 3.

8 Off-design performance analysis

The same off-design performance analysis method presented in Section 5 can be used for propellers

as well as turbines. The Newton solver implemented in OpenProp was in fact written for the

turbine case, where the operating state is characterized by an off-design (OD) tip-speed ratio,

λOD =
ωODR

Vs
=

π

Js,OD
(8.1)

and unknown flow parameters {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t }. Since the same governing equations

apply to the propeller and turbine cases, the same code can be used for either. It should be noted

that at the time of this publication, the ducted design or off-design analysis features were not

validated for the turbine case.

An example off-design analysis is presented in figure 9. For reference, the ADS performance

frontier, industry wind turbine data, and the performance of ADS-based optimized turbines with

CD/CL = 0.01 and Z = 3 are reproduced from figure 8. The off-design performance is shown

for the turbine designed to operate at λD = 5. The performance predicted by the analyzer (‘•’)

agrees with the performance predicted by the optimizer (‘N’) at λ = 5, and the performance for

higher tip speed ratios compares quite favorably with wind turbine industry performance data from

(Kahn 2006). For λ < 3, the power coefficient drops precipitously, as the net angle of attack drops

below the specified stall angle (−8◦) at many blade sections and the blade stalls. For 3 < λ < 5,

the turbine optimized for λD = 5 outperforms the ADS-based performance frontier. That is, the

λD = 5 turbine (‘•’) outperforms the ‘optimized’ turbines at λ = 4 and 3 (‘N’), indicating that the

ADS-based optimization method does not truly find the best configurations possible. Reformulating

the turbine optimization method is one focus of ongoing work.
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9 Using OpenProp for ship resistance and powering calculations

This section reviews ship resistance and powering and outlines how to use OpenProp to perform

such calculations. Assume that bare ship resistance data is given, Rs, tabulated versus ship speed,

Vs. The effective power required to propel the ship at speed Vs then is

PE ≡ RsVs (9.1)

The power delivered to the propeller at ship speed Vs is called the delivered power,

PD ≡ (2πn)Q (9.2)

where n and Q are the rotation rate (rev/s) and torque at the propeller. The ratio of the effective

power to the delivered power is known as the quasi-propulsive coefficient

ηD ≡
PE
PD

(9.3)

A propeller operating in the wake of a ship sees a distribution of (circumferential average) axial

inflow, Va(r), different from (and often less than) the ship speed. The volumetric mean inflow

velocity is defined as

V̄A ≡
1

πR2 − πR2
hub

R∫
Rhub

2πr Va(r) dr (9.4)

Moreover, the action of the propeller alters the pressure field about the ship, often requiring

propeller thrust T greater than the bare ship resistance Rs to maintain the same ship speed, Vs.

Combining these two effects, the thrust power is defined as

PT ≡ T V̄A (9.5)

Thus, the efficiency of the propeller operating behind the ship is

ηB ≡
PT
PD

=
T V̄A

(2πn)Q
=
Js
2π

KT

KQ

V̄A
Vs

(9.6)

This is the efficiency computed by OpenProp. The off-design analysis code in OpenProp

calculates KT , KQ, and ηB versus advance coefficient Js, defined as.

Js =
Vs
nD

(9.7)
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For clarity and completeness, several other definitions are now given. The advance coefficient

can also be defined using the volumetric mean inflow speed, as

JA =
V̄A
nD

(9.8)

In open water, the propeller sees uniform axial inflow, Va(r) = V̄A. A propeller operating in open

water with the same speed V̄A and advance coefficient JA (i.e. the same rotation rate n) as the wake

inflow case, will produce thrust To and torque Qo and thus have open-water efficiency of

ηo ≡
ToV̄A

(2πn)Qo
(9.9)

The relative-rotative efficiency is defined as the ratio of the behind-ship efficiency to the open-water

efficiency with the propeller operating at the same advance coefficient JA,

ηR ≡
ηB
ηo

(9.10)

The Taylor wake fraction, w, is defined as (1− w) = Va(r)
Vs

. The volumetric mean wake fraction

wv is calculated in a similar manner as equation (9.4).

(1− wv) =
V̄A
Vs

(9.11)

Given a wake profile Va(r), OpenProp computes VMIV ≡ V̄A
Vs

and stores it in the design data

structure. The thrust deduction factor relates the propeller thrust T required to drive the ship at

speed Vs to the bare hull ship resistance at that speed, Rs, via

(1− t) =
Rs
T

(9.12)

Building on these definitions, the hull efficiency is defined as

ηH ≡
PE
PT

=
RsVs
T V̄A

=
(1− t)

(1− wv)
(9.13)

Thus, the quasi-propulsive coefficient can be written as

ηD = ηHηB = ηHηRηo (9.14)
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The shaft transmission efficiency (typically assumed to be 1.0) is in general

ηS =
PD
PS

(9.15)

where PS is the shaft power output from the engine (typically taken as the power required of the

ship’s engine). Combining the quasi-propulsive coefficient and the shaft transmission efficiency, one

arrives at the overall propulsive efficiency

ηP ≡
PE
PS

= ηDηS = ηHηBηS (9.16)

9.1 Computing powering requirements

The following procedure can be used to compute ship powering requirements using OpenProp.

1. Given the following:

• ship resistance data, Rs, tabulated versus ship speed, Vs,

• propeller design, with wake profile Va(r) or wake fraction wv,

• thrust-deduction factor, t,

• shaft transmission efficiency, ηS .

2. Use Analyze.m to find the (wake-adapted) propeller performance curve:

{C∗T ,K∗T ,K∗Q, η∗B, . . .} versus J∗s (9.17)

(where ∗ indicates that the data is tabulated versus these particular J∗s .)

3. Find required propeller thrust (for each ship speed):

T =
Rs

(1− t)
(9.18)

4. Find required thrust coefficient (for each ship speed):

CT =
T

1
2ρV

2
s πR

2
(9.19)

5. Interpolate to find the advance coefficient (for each ship speed):

Js = interpolate(C∗T , J
∗
s , CT ) (9.20)
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6. Interpolate to find the propeller behind-hull efficiency (for each ship speed):

ηB = interpolate(J∗s , η
∗
B, Js) (9.21)

7. Interpolate to find torque coefficient (for each ship speed):

KQ = interpolate(J∗s ,K
∗
Q, Js) (9.22)

8. Find required rotation rate (for each ship speed):

n =
Vs
JsD

(9.23)

9. Find required torque (for each ship speed):

Q = KQρn
2D5 (9.24)

10. Find delivered power (for each ship speed):

PD = (2πn)Q (9.25)

11. Find the engine shaft power (for each ship speed):

PS =
PD
ηS

(9.26)

12. Find the hull efficiency (same for all ship speeds):

ηH =
RsVs
T V̄A

(9.27)

13. Find the overall propulsive efficiency (for each ship speed):

ηP = ηDηS = ηHηBηS (9.28)
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10 Non-dimensional parameters

Table 1 summarizes the non-dimensional form of the flow- and performance parameters used herein.

OpenProp Herein Description
Vs Vs ship speed (free-stream speed) [m/s]
R R propeller radius [m]
D D propeller diameter [m]
n n rotation rate [rev/s] (ω = 2πn)

Rhub_oR rh/R normalized hub radius
RC rc/R normalized control point radius
DR 4rv/R normalized difference in vortex radii
CoD c/D normalized section chord
VAC Va/Vs normalized axial inflow velocity
VTC Vt/Vs normalized tangential inflow velocity

UASTAR u∗a/Vs normalized induced axial velocity
UTSTAR u∗t /Vs normalized induced tangential velocity
UAHIF 2πR · ū∗a normalized axial horseshoe influence function
UTHIF 2πR · ū∗t normalized tangential horseshoe influence function

G Γ/(2πRVs) normalized circulation
VSTAR V ∗/Vs normalized total inflow speed
dVdG 2πR · ∂V ∗∂Γ normalized ∂V ∗

∂Γ

dVdW ∂V ∗

∂ω /R normalized ∂V ∗

∂ω

LM λ1/R normalized Lagrange multiplier
CT CT = T

1
2ρV

2
s πR

2
thrust coefficient based on ship speed

CQ CQ = Q
1
2ρV

2
s πR

3
torque coefficient based on ship speed

CP CP = Qω
1
2ρV

3
s (πR2)

power coefficient (CP = ωR
Vs
CQ = λCQ =

CQπ
Js

)

KT KT = T
ρn2D4 thrust coefficient based on blade tip speed

KQ KQ = Q
ρn2D5 torque coefficient based on blade tip speed

Js Js = Vs
nD = πVs

ωR advance coefficient
L λ = ωR

Vs
= π

Js
tip-speed ratio

Table 1: Table of non-dimensional flow parameters in OpenProp.
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