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Abstract 

   
Propellers are typically optimized to provide the maximum thrust for the minimum torque at a 
specific number of revolutions per minute (RPM) at a particular ship speed.  This process allows 
ships to efficiently travel at their design speed.  However, it is useful to know how the propeller 
performs during off-design conditions.  This is especially true for naval warships whose missions 
require them to perform at a wide range of speeds.  Currently the Open-source Propeller Design 
and Analysis Program can design and analyze a propeller only at a given operating condition 
(i.e. a given propeller RPM and thrust).  If these values are varied, the program will design a new 
optimal propeller for the given inputs.  The purpose of this thesis is to take a propeller that is 
designed for a given case and analyze how it will behave in off-design conditions.   
 
Propeller performance is analyzed using non-dimensional curves that depict thrust, torque, and 
efficiency as functions of the propeller speed of advance.  The first step in producing the open 
water diagram is to use lifting line theory to characterize the propeller blades.  The bound 
circulation on the lifting line is a function of the blade geometry along with the blade velocity 
(both rotational and axial).  Lerbs provided a method to evaluate the circulation for a given set of 
these conditions.  This thesis implements Lerbs method using MATLAB® code to allow for fast 
and accurate modeling of circulation distributions and induced velocities for a wide range of 
operating conditions.  These values are then used to calculate the forces and efficiency of the 
propeller.  The program shows good agreement with experimental data. 
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1. Introduction and Recent Propeller Design Advances 

 

Propellers are typically optimized to provide the maximum thrust for the minimum torque at a 

specific number of revolutions per minute (RPM) at a particular ship speed.  This process works 

very well for merchant ships that travel across the ocean at a relatively constant speed.  There is 

a certain RPM at which their engines operate most efficiently.  If their propeller can produce the 

thrust to achieve the desired speed while turning at the proper rate, then the ship will arrive at its 

destination using the minimal amount of fuel.  The process is not much different for a Naval ship 

except tactical situations often require a wider range of speeds to be used in order to accomplish 

the mission.  Therefore, even though a ship’s propeller can be optimized for a given set of 

conditions, it is very useful to know how the propeller performs at off-design conditions.  

 

The purpose of this thesis is to take a propeller that is designed for a given case and analyze how 

it will behave at off-design advance ratio values.  This will be done by producing the propeller 

open water diagram as described by Woud and Stapersma in (6).  Propeller performance can be 

expressed in four non-dimensional parameters: 

• The advance ratio, JS. 

• The thrust coefficient, KT. 

• The torque coefficient, KQ. 

• The open water efficiency, η. 

The advance ratio non-dimensionalizes the ships velocity (VS), which is the same as the velocity 

of advance (Va) since there are no wake effects in an open water analysis, using the propeller tip 

speed as shown in equation (1.1).  Thrust and torque are also non-dimensionalized using the 

propeller’s speed and diameter as well as the density of seawater as shown in equations (1.2) and 

(1.3) respectfully.  The open water efficiency is expressed in terms of the above parameters as 

shown in equation (1.4).  A propeller open water diagram is constructed such that KT, KQ, and η 

are all functions of JS.  In keeping with common practice, KQ is multiplied by ten in order to 

better present the curves on one set of axes. 
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The first step in producing the open water diagram is to use lifting line theory to characterize the 

propeller blades.  In this theory the blade is replaced by a straight line.  As described in Abbott 

(7), the circulation about the blade associated with lift (also called thrust) is replaced by a vortex 

filament.  The vortex filament lies along the straight line; and, at each span-wise station, the 

strength of the vortex is proportional to the local intensity of lift.  According to Helmholtz’s 

theorem, a vortex filament cannot terminate in the fluid.  The variation in vortex strength is 

therefore assumed to result from superposition of a number of horseshoe shaped vortices, as 

shown in Figure 1 from (1).  The portions of the vortices lying along the span are called the 

bound vortices.  The portions of the vortices extending downstream indefinitely are called the 

trailing or free vortices.  
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Figure 1:  Vortex Patter Representing a Lifting Wing 

 

The effect of the trailing vortices corresponding to a positive lift is to induce a downward 

component of velocity at and behind the blade.  This downward component is called the 

downwash.  The magnitude of the downwash at any section along the span is equal to the sum of 

the effects of all the trailing vortices along the entire span.  The effect of the downwash is to 

change the relative direction of the fluid stream over the section.  The section is assumed to have 

the same hydrodynamic characteristics with respect to the rotated stream as it had in the normal 

two-dimensional flow.  The rotation of the flow effectively changes the angle of attack.  (7) 

 

The method described by Lerbs in (8) is used to determine the circulation and induced velocity 

distributions for given values of JS using the hydrodynamic properties of the foil sections at 

specified radial distances along the propeller blade.  With the circulation and velocities 

calculated, functions built into OpenProp then determine the values of KT, KQ, and η.  Finally, 

the whole process is repeated again for another value of JS until the entire diagram is produced.  
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1.1 Recent Advances 

 

Open-source Propeller Design and Analysis Program (OpenProp) is an open source 

MATLAB®-based suite of propeller numerical design tools.  This program is an enhanced 

version of the MIT Propeller Vortex Lattice Lifting Line Program (PVL) developed by Professor 

Justin Kerwin at MIT in 2001.  OpenProp v1.0, originally titled MPVL, was written in 2007 by 

Hsin-Lung Chung and Kate D’Epagnier and is described in detail in (1) and (2).  Two of its main 

improvements versus PVL are its intuitive graphical user interfaces (GUIs) and greatly improved 

data visualization which includes graphic output and three-dimensional renderings.  OpenProp 

v2.0 was written in 2008 by John Stubblefield and is described in detail in (3).  The main 

improvement of version 2 was the ability to model an axially symmetric ducted-propeller with no 

gap between the duct and the propeller.  OpenProp v3.0 was written by Brenden Epps.  The main 

improvement of version 3 was …(?) 

 

OpenProp was designed to perform two primary tasks: parametric analysis and single propeller 

design.  Both tasks begin with a desired operating condition defined primarily by the required 

thrust, ship speed, and inflow profile.  The parametric analysis produces efficiency diagrams for 

all possible combinations of number of blades, propeller speed, and propeller diameter for ranges 

and increments entered by the user.  The efficiency diagrams are then used to determine the 

optimum propeller parameters for the desired operating conditions given any constraints (e.g. 

propeller speed or diameter) specified by the user.  The single propeller design routine produces 

a complete propeller design which is optimized for the desired operating condition and defined 

propeller parameters (number of blades, propeller speed, propeller diameter, hub diameter, etc).  

If these values are varied, the program will design a new optimal propeller for those given inputs, 

but it will not analyze the same propeller at new conditions.   

 

In 2008 Christopher Peterson developed MATLAB® executables that interface with a modified 

version of XFOIL for determining the minimum pressure of a foil operating in an inviscid fluid 

which are described in detail in (4).  XFOIL is an analysis and design system for Low Reynolds 

Number Airfoils.  XFOIL uses an inviscid linear-vorticity panel method with a Karman-Tsien 

compressibility correction for direct and mixed-inverse modes.  Source distributions are 
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superimposed on the airfoil and wake permitting modeling of viscous layer influence on the 

potential flow.  Both laminar and turbulent layers are treated with an e9-type amplification 

formulation determining the transition point.  The boundary layer and transition equations are 

solved simultaneously with the inviscid flow field by a global Newton method as described by 

Drela in (5).  Peterson’s code creates minimum pressure envelopes, similar to those published by 

Brockett (1965).  The modified XFOIL and MATLAB® interface was intended for future 

interface with OpenProp. 
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2. Theoretical Foundation 

 

The free vortex lines described in Section 1 are not acted on by forces.  Their directions, 

according to wing theory, coincide with that of the resultant lifting system.  This results in the 

free vortex lines of a propeller forming a general helical shape.  When all the free vortex lines 

are combined, they form a free vortex sheet that is in the shape of a general helical surface.  The 

shape of the helical sheets and their induced velocities are mutually dependant so certain 

assumptions about the shape of the helical sheets are required.  The methods described in this 

thesis are applicable to moderately loaded propellers, therefore the following assumptions apply.  

The induced velocities are allowed to influence the shape of the free helical sheets.  However, 

the effects of centrifugal forces and wake contraction on the shape of the sheets are neglected.  

The work of Betz, Lock, and Kramer showed that for a moderately loaded propeller with an 

optimum circulation distribution, the assumption that the deformation of the helical sheets in the 

axial direction can be neglected produced results in close agreement with experimental data.  The 

assumption that the axial deformation can be neglected will be extended here to non-optimum 

circulation distributions.  Therefore, the vortex sheets discussed in the upcoming sections are of 

general helical shape and are made up of cylindrical vortex lines of a constant diameter and pitch 

angle in the axial direction.  In addition, the curling up of the vortex sheets a certain distance 

behind the propeller caused by the sheet’s self motion is also disregarded. (8) 

2.1 Velocity Field of Symmetrically Spaced Helical Vortex Lines 

 

There are two possible ways to determine the velocity field of symmetrically spaced helical 

vortex lines, the integral by Biot-Savart and Laplace’s differential equation.  Kawada in (9) used 

the Laplace equation approach to develop analytical expressions for the velocity potential.  These 

expressions provide numerical results more readily than the elaborate numerical integration 

carried out by Strscheletzky in (10) following the Biot-Savart method.  (8)  

 

Kawada considers a propeller of g blades modeled as a symmetric system of g helical tip vortices 

combined with an axial hub vortex which has the same strength of all the tip vortices combined.  
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Kawada’s potential function is only justified when assuming that the vortex system is infinitely 

long in both directions of the axis.  By subtracting the potential of the hub vortex from this 

expression, the potential for an infinitely long symmetrical system of g helical vortices of 

constant radius, ro, and constant pitch angle βio, is obtained.  First, a cylindrical coordinate 

system (z, ψ, r) is defined where z equals zero at the propeller and is positive in the direction of 

flow, and ψ equals zero at the first lifting line.  Then the potential for internal points (r< ro) in the 

field is defined by equation (2.1), and the potential for external points (r>ro) is defined by 

equation (2.2).  (8) 
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For the potential equations, !  is defined as the infinitesimal circulation of one of the g vortex 

lines which is related to the circulation at one of the lifting lines, Г, by equation (2.3).  In 

addition, ko and !  are defined in equations (2.4) and (2.5) respectively.  The functions I and K 

are modified Bessel functions of the first and second kind.  The prime symbol denotes the 

derivative with respect to the argument.  (8) 

 dr
dr
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In order to find the induced velocities at a lifting line of the propeller, equations (2.1) and (2.2) 

can be used with ψ and z both equal to zero.  However, these velocities would correspond to a 

vortex system that extends from z equals positive infinity to negative infinity which is essentially 

a two-dimensional system.  The vortex system of an actual propeller is three-dimensional and the 

vortex system extends only from z equals zero to positive infinity.  In order to determine if 

velocities of the three-dimensional system could be determined from the two-dimensional 
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system, Lerbs (8) considered the velocity-integrals by Biot-Savart for the assumed case that both 

ro and βio are independent of ψ.  It was concluded from these integrals that the effect of the axial 

and tangential components of the system between z equals negative infinity and the propeller 

(z=0) is equal to the effect of the system between the propeller and z equals positive infinity for 

points on the lifting line.  Therefore it follows that the axial, 
a
w , and tangential, 

t
w , velocities 

induced at a lifting line of a propeller are simply half the axial and tangential velocities induced 

from the potentials in equations (2.1) and (2.2).  These induced velocities are shown for both the 

internal and external points in equations (2.6) through (2.9). 
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For the purposes of numerical integration, the Bessel functions and their derivatives are 

estimated by Nicholson’s asymptotic expansions (11).  The final results for the induced 

velocities at one of the lifting lines are shown in equations (2.10) through (2.13). 
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Unfortunately, numerical accuracy of the induced velocities is degraded when the reference 

radius approaches the vortex radius because the expressions go to infinity.  This problem can be 

avoided by using the induction factors from (9) as defined in equations (2.18) and (2.19).  The 

induction factors are the induced velocity components non-dimensionalized by the velocity 

induced at r by a straight potential vortex extending from z equals zero to positive infinity of 

strength ! situated at ro.  Both the induced velocities and the non-dimensionalizing velocity 

become infinite in the same order as r approaches ro.  Therefore the induction factors remain 

finite as the radii approach each other.  Combining the induced velocity equations into the 

induction factor equations yields the final induction factors as shown in equations (2.20) through 

(2.23). 
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It is interesting to note that the induction factors are functions of geometric properties (i.e. the 

relative position of the reference point and where the vortex is shed as well as the angle at which 

it is shed) and are not dependant on the circulation.  Also of note is that the above expressions 

apply to only one lifting line.  In general, there will also be induced velocities at each lifting line 

(i.e. each blade) from all other lifting lines.  However, if the propeller is symmetric, these effects 

will cancel each other out.  (8) 

 

In order to evaluate the accuracy of the assumptions leading to the calculation of the induction 

factors, Lerbs (8) compared the calculated values to those calculated using direct numerical 

integration of the Biot-Savart integral by Strscheletzky (10) in the case of g equals 3.  He found 

the method of Strscheletzky produced higher values than the method explained above, but only 

when iti is smaller than 0.06.  Differences when the induction factor is so small have a negligible 

effect on the overall final values. 

2.2 Velocity Field of Symmetrically Spaced Helical Vortex Sheets 

 

Section 2.1 developed the velocity field for g helical vortex lines.  When multiple vortex lines 

are shed from the same lifting line, a vortex sheet is formed.  The velocity components which are 

produced by the vortex sheets are obtained by integrating the effects of the vortex lines over the 

span of the lifting line.  By integrating over the free vortices and using equations (2.3), (2.18), 

and (2.19), expressions for the induced velocities (non-dimensionalized with the speed of 

advance) at station x of the lifting line are shown in equations (2.24) and (2.25).  These equations 

are in terms of the non-dimensional circulation (G) as defined in equation (2.26).  (8) 
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Expanding on the method used by Glauert (12) in airfoil theory, the values of the integrals in 

equations (2.24) and (2.25) can be determined.  This requires a new variable, φ, as defined in 

equation (2.27) which is zero when x equals the hub radius, xh, and π when x is at the blade tip. 

 ( ) ( ) ( )!cos1
2

1
1

2

1

hh
xxx ""+=  (2.27) 

 

For the purpose of analysis, G is estimated to go to zero at the hub and at the tip.  For a real 

propeller, the hub does carry some circulation as described in (12).  Therefore, this assumption is 

not always valid, but it does provide a good first order approximation.  This assumption also 

does not hold true for propellers with a zero-gap duct, but that is beyond the scope of this thesis.  

Circulation is continuous along the span of the blade, therefore G can be written as the Fourier 

series shown in equation (2.28).  The continuity of G also ensures that single vortices of finite 

strength do not occur and that the series for G, when placed into equations (2.24) and (2.25), 

gives the complete induced velocity components.  (8) 
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In addition to the pitch angle and the number of blades, the induction factors from Section 2.1 

also depend on φ and φo.  The induction factors, with respect to φo, can be written as an even 

Fourier series as described by Schubert (13).  This is shown in equation (2.29).   
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It follows that the expressions for the non-dimensional induced velocities become as shown in 

equations (2.30) and (2.31) where t

m
h  is defined in equation (2.32).  ( a

m
h  will be defined later.) 
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The two integrals inside the summation of equation (2.32) can be solved by following Glauert’s 

method (12).  For values of m>n, the summation become equation (2.33), and for values of m<n, 

the summation becomes equation (2.34).  With these substitutions made, the final form of t

m
h  

becomes equation (2.35).  A similar process is followed for a

m
h  resulting in equation (2.36). 
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Equations (2.35) and (2.36) become indefinite at the hub (φ = 0º) and at the blade tip (φ = 180º).  

L’Hospital’s rule provides values for the functions at these points as shown in equations (2.37) 

and (2.38). 
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The above equations allow the induced velocity components to be related to the circulation 

distribution and the induction factors.  The induction factors are known from equations (2.20) 

through (2.23).  Therefore the induced velocity for any circulation distribution that can be 

represented by equation (2.28) can be calculated, or vice versa.  However, it will be necessary to 



20 
 

use successive iterations and approximations since the induction factors depend on the pitch 

angles of the sheets which, in turn, depend on the induced velocities.  (8) 

2.3 Application to Moderately Loaded Free-Running Non-Optimum Propellers 

 

The vortex sheets described in Section 2.2 are made up of cylindrical vortex lines whose pitch 

does not change in the axial direction.  The next step is to determine the conditions imposed on 

the variations of the pitch of the vortex lines in the radial direction such that the entire system 

accurately models the vortex system of an actual propeller.   

 

The force and the flow generated at a lifting line by the vortex sheets of Section 2.2 can be 

related using an energy balance of the propeller flow.  The input power equals the useful power 

plus the increase in kinetic energy within the volume that passes through the slipstream in a 

single unit of time.  Input power is also made up of an external input plus the work done by the 

centrifugal pressure on the volume of water in a single unit of time.  As stated earlier, for a 

moderately loaded propeller, it is acceptable to neglect the effects of the centrifugal pressure.  

Therefore, the energy balance takes the form of equation (2.39) where the integral is taken over a 

disc with the same diameter as the propeller and ΔE is the kinetic energy of the induced flow 

within the volume of fluid that passes a point in the ultimate wake in one unit of time.  (8) 

 ( ) EvdTdQr
A

!="# $  (2.39) 

 

At the lifting line, the left hand side of equation (2.39) can be expressed in terms of the relative 

flow’s pitch by substituting dQ and dT with their respective expressions from the Kutta-

Joukowski law.   The Kutta-Joukowski law states that the force at the lifting line is perpendicular 

to the resultant incoming flow.  Using the nomenclature of Figure 2, the equivalent of the left 

hand side is shown in equation (2.40).  (8) 
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Figure 2:  Pitch Angle Relationships to Velocities and Forces 
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Using Green’s theorem, the kinetic energy of the flow which is included in a certain volume can 

be represented by an integral over the surface of the volume.  Applying this to the right hand side 

of equation (2.39) allows it to be expressed in terms of the pitch of the vortex lines as shown in 

equation (2.41).  (8) 
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Since the left hand side must equal the right hand side, the integrals in equations (2.40) and 

(2.41) must be the same.  Therefore ( )r
i

!  must equal ( )r
i

!" .  In other words, the vortex lines 

must leave the lifting line at a pitch angle equal to the angle of the resultant inflow.  The angle of 

the resultant flow is dependent on the accuracy of the approximations of the induced flow 

distributions, wa(x) and wt(x).  The level of accuracy of the flows caused by the vortex sheets in 

Section 2.2 is ascertained by comparing them to a known solution of the flow past a propeller.  
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One solution for comparison is that of an optimum propeller for which the Betz condition 

(defined in equation (2.42)) holds.  (8) 

 constant
2

2
=

+

!

a

t

wv

wr

r

v "

"
 (2.42) 

 

Equation (2.43) shows the expansion of both the numerator and denominator of the Betz 

condition.  This shows that the Betz condition is met if the induced velocity terms of order two 

or greater can be neglected.  From this it is expected that for an arbitrary circulation distribution, 

the induced velocity at a lifting line is sufficiently estimated from the vortex sheets of Section 

2.2 when higher order terms of the axial and tangential induced velocities are small compared to 

v and ωr, respectively.  To this degree, the difference in the shape of the actual and modeled 

vortex sheets is insignificant.  (8) 
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2.4 Determining the Circulation and Induced Velocities 

 

Given that the geometry and polar curves of a propeller are known, it is possible to estimate the 

circulation and induced velocity distributions for a given advance ratio.  In order to ease the 

calculations, the advance coefficient will be used in lieu of the advance ratio.  The advance 

coefficient is defined as the advance ratio divided by pi.   

 

The first step is to use the Kutta-Joukowski law and the nomenclature of Figure 3 from (8) to 

derive the relationship between the lift coefficient and the circulation at any radius along the 

blade as shown in equation (2.44).  The solidity of the propeller, s, is defined in equation (2.45) 

where l  is the chord length at a specified radius. 
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Figure 3:  Velocity Diagram of a Moderately Loaded Propeller 

 

 
V

gGv
sCL

2
=  (2.44) 

 
D

gl
s

!
=  (2.45) 

 

For a small angle of attack α, the lift curve slope is approximately constant.  Therefore, the lift 

coefficient can be found as shown in equation (2.46) which also shows the rearrangement of the 

different angular values base on Figure 3.  Figure 3 can also be used to determine expressions for 

both the non-dimensional inflow velocity and the tangent of (β+αi) as functions of the advance 

coefficient which are shown in equations (2.47) and (2.48), respectively. 
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Combining equations (2.44), (2.46), and (2.47) results in equation (2.49). 

 ( ) ( ) ( )ii
L

o
Lt gG

d

dC
s

d

dC
s

v

wx
!"!

!
"!#

!$
+=%

&

'
(
)

*
+++,

-

.
/
0

1
+ 2

cos2  (2.49) 

 

The next step is to substitute the expressions for wa, wt, and G (defined above in equations 

(2.24), (2.25), and (2.28) ) into equations (2.49) and (2.48).  The results of this substitution are 

shown in equations (2.50) and (2.51). 
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The final step in finding an approximation for the circulation distribution and the induced 

velocities at the lifting line is to satisfy equations (2.50) and (2.51) at m stations along the blade.  

Successive iterations become necessary by starting with a reasonable guess for the distribution of 

αi and solving equation (2.50) for the Fourier coefficients, Gm.  These coefficients are then used 

in equation (2.51) to determine a new αi distribution.  The average of the new and the old αi 

distributions are taken as the starting distribution for the next round of iteration.  This process is 

repeated until the new and the old αi distributions differ by only a small amount.  A difference of 

less than °± 2.0  is considered sufficient accuracy.  (8) 
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3. Implementation and Validation 

Given the basic geometry and polar curves of a propeller, along with an educated guess for the 

hydrodynamic pitch angle of the resultant inflow, the theories of Section 2 will produce the 

circulation and induced velocity distributions at the lifting line approximation of the propeller 

blade for a given advance ratio.  This data can then be used with the Forces.m function defined 

in OpenProp to determine the thrust, torque, and efficiency information for the propeller. 

3.1 MATLAB® Implementation of the “Building Blocks” 

In order to implement the theories of Section 2 as a fast and reliable propeller analysis tool, the 

equations were coded using MATLAB®.  Although the only equations that are necessary for the 

analysis are equations (2.50) and (2.51) , the major required inputs were coded as separate 

functions in order to provide greater understanding to the reader as well as greater ease in 

troubleshooting the code.  All of the MATLAB® functions described in Section 3 can be found 

in Appendix A. 

 

The first function in the process is named Find_Lerbs_Induction_Factors.m.  This function takes 

as input the non-dimensional radial coordinate of a control point and a vortex shedding point in 

addition to the number of blades of the propeller and the pitch distribution of the vortex sheets.  

Then, using equations (2.20) through (2.23), it calculates the axial and tangential induction 

factors.  The function can only do this process for a single set of inputs, therefore it must be 

called multiple times in a loop to determine the induction factors at all control points caused by 

the entire vortex system. 

 

The next function is named Calculate_Induction_Fourier_Coefficients.m.  This function also 

takes as input the non-dimensional radial coordinates of control points and vortex shedding 

points with the axial and tangential induction factors determined in the previous function.  It 

returns both the axial and tangential Fourier coefficients defined in equation (2.29). 

 

The next function is named Calculate_hm_factors.m.  This function takes the induction Fourier 

coefficients and the non-dimensional radial coordinates of the control points as inputs in order to 
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return the factors a

m
h  and t

m
h  from the induced velocity equations as they are defined in 

equations (2.35) through (2.38). 

3.2 Validation of the “Building Blocks” with Lerbs’ Example Data 

The functions in Section 3.1 provide the basic building blocks needed to solve for the unknown 

circulation distribution and induced velocities.  In order to ensure the MATLAB® functions did 

not contain errors, their outputs were compared to the Lerbs’ example from Part 2 Section A-1 of 

(8).  The example consists of a 4 bladed propeller with a zero hub radius at an advance 

coefficient of 0.2.  The specific section data is shown in Table 1. 

( )°!  x  ( )°
io

!  

0 0.000 90.00 

30 0.067 75.55 

60 0.250 46.12 

90 0.500 27.47 

120 0.750 19.12 

150 0.933 15.58 

180 1.000 14.57 
Table 1:  Input Data for Lerbs' Example 

 

Table 2 and Table 3 show the difference in the axial and tangential induction factors calculated 

by the Find_Lerbs_Induction_Factors.m function and those presented by Lerbs in (8).  The 

minor differences are expected since Lerbs read the induction factors off of a graph and the 

function calculates them from equations. 

Radial Location of Control Points (deg) Radial Location of  
Shed Vortices (deg) 30 60 90 120 150 

0 0.000 0.000 0.000 0.000 0.000 
30 0.000 -0.006 0.000 0.000 0.000 
60 -0.006 0.000 -0.027 0.000 0.000 
90 0.003 0.000 0.000 -0.050 -0.009 
120 -0.002 0.004 -0.010 0.000 -0.140 
150 -0.004 -0.018 0.015 0.021 0.000 
180 -0.002 0.022 -0.022 0.000 -0.008 

Table 2:  Axial Induction Factor Difference 
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Radial Location of Control Points (deg) Radial Location of  
Shed Vortices (deg) 30 60 90 120 150 

0 0.000 0.000 0.000 0.000 0.000 
30 0.000 0.006 0.002 0.001 0.001 
60 0.000 0.000 0.005 0.001 0.002 
90 0.000 -0.002 0.000 0.012 -0.001 
120 0.000 0.000 -0.002 0.000 0.004 
150 0.000 0.000 -0.008 -0.011 0.000 
180 0.000 0.000 -0.004 -0.009 -0.005 

Table 3:  Tangential Induction Factor Difference 
 

Table 4 and Table 5 show the difference in the axial and tangential induction factors Fourier 

coefficients calculated by the Calculate_Induction_Fourier_Coefficients.m function and those 

presented by Lerbs in (8).  The occasional minor differences are in the third decimal place which 

is the extent of the accuracy of the data in (8). 

Induction Factor Fourier Coefficients Radial Location of  
Control Points (deg) 0 1 2 3 4 5 6 

30 0.000 0.000 0.000 0.000 0.000 0.001 0.000 
60 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
90 0.000 0.000 0.000 0.000 0.001 0.000 0.000 
120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
150 -0.001 0.000 -0.001 0.000 0.001 0.000 0.001 

Table 4:  Axial Induction Factor Fourier Coefficient Difference 
 

Induction Factor Fourier Coefficients Radial Location of  
Control Points (deg) 0 1 2 3 4 5 6 

30 0.000 0.000 0.001 0.000 0.001 -0.001 0.000 
60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 5:  Tangential Induction Factor Fourier Coefficient Difference 
 

Table 6 and Table 7 show the difference in the factors a

m
h  and t

m
h  from the induced velocity 

equations as calculated by the Calculate_hm_factors.m function and those presented by Lerbs in 

(8).  The occasional minor differences are typically in the third decimal place which is the extent 

of the accuracy of the data in (8). 

Induction Factor Fourier Coefficients Radial Location of  
Control Points (deg) 1 2 3 4 5 

30 -0.004 -0.006 -0.002 0.001 -0.001 
60 0.000 0.002 0.000 -0.001 -0.005 
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90 0.000 0.000 0.001 0.000 0.000 
120 -0.002 0.001 -0.002 0.000 -0.003 
150 -0.002 0.004 -0.006 0.000 -0.002 

Table 6:  Axial hm Factor Difference 
 

Induction Factor Fourier Coefficients Radial Location of  
Control Points (deg) 1 2 3 4 5 

30 -0.002 -0.006 -0.002 0.003 -0.005 
60 -0.001 -0.003 0.000 0.003 -0.001 
90 -0.001 0.000 0.000 0.000 0.000 
120 -0.001 0.000 -0.002 0.001 -0.003 
150 -0.011 0.002 -0.001 -0.001 0.001 

Table 7:  Tangential hm Factor Difference 
 

The above results show that the “building block” functions have sufficient accuracy to be used to 

in the calculation of circulation and induced velocities.   

3.3 MATLAB® Implementation for Finding Circulation, Induced Velocities, and 

the Resultant Forces 

With the building blocks in place, the next step is to use them to solve equations (2.50) and 

(2.51).  This is done using the Calculate_Gm_and_new_AlphaI.m function.  This function 

returns estimations of the Fourier coefficients for the non-dimensional circulation function 

shown in equation (2.28), the unknown angle αi from equation (2.51), and the components of the 

induced velocity from equations (2.30) and (2.31) all of which are based on the inputted guess of 

αi.  The inputs required by the function are grouped into two main categories, the propeller 

geometry and its operating conditions. 

 

The important aspects of propeller geometry include the solidity of the propeller as defined in 

equation (2.45) as well as the pitch angle and the foil section data at specified non-dimensional 

radial coordinates.  The first required value of foil data is the slope of the lift curve as a function 

of angle of attack.  Appendix IV of Abbott (7) provides the polar plots of many NACA 4, 5, 6, 

and 7 series airfoils.  If the propeller blade is made up of one of these foils, then the slope of the 

curve can be determined graphically.  However, this is not convenient when automating the 

process with MATLAB®.  Wing theory states that the theoretical slope of the lift curve is 2π 
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radians (7).  Experimental results have shown close agreement with this value, therefore it will 

be used for this thesis. 

 

The next required piece of data for the foil sections is the angle of attack that produces no lift 

(also called the angle of zero lift).  Abbott (7) provides many ways to determine this angle.  If the 

propeller blade is made up of foil section contained in Appendix IV of (7), the angle of zero lift 

can be graphically determined from the polar plots.  Again, this is not convenient for the 

computing environment.  If the mean line distribution is known, Abbott outlines a method 

derived by Munk to estimate the angle of zero lift with equation (3.1).  It requires that the 

ordinates of the mean line as a percent of the chord, y1 through y5, are known at specific chord-

wise percentages, x1 through x5, defined below.  The constants k1 through k5 are defined such 

that the angle of zero lift is returned in degrees.     

 
5544332211
ykykykykyko ++++=!"  (3.1) 
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The function Calculate_Angle_of_Zero_Lift.m approximates the angle of zero lift for a NACA 

a=0.8 mean line foil.  The function is easily adaptable to other mean lines by entering new x-y 

coordinates.  The coordinates of many mean lines are listed in Abbott’s Appendix II (7).  The 

function takes as input the maximum chamber ratio and scales the mean line ordinates from the 

design conditions to the desired conditions.  It then uses equation (3.1) to calculate and return the 

angle of zero lift in degrees. 

 

The final inputs for the Calculate_Gm_and_new_AlphaI.m function are the operating conditions.  

They consist of the advance coefficient, angle of flow, the factors a

m
h  and t

m
h , and the estimation 

of αi.  The propellers rotational and axial speeds dictate the advance coefficient (as described in 

Section 2.4) as well as the angle of flow, β, as shown in Figure 3.  The factors a

m
h  and t

m
h  are 
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define in equations (2.35) and (2.36).  The initial guess of the angle αi can be obtained from 

OpenProp. 

 

With all of the inputs determined, the Calculate_Gm_and_new_AlphaI.m function starts with 

equation (2.50).  The left-hand side of the equation is calculated for every control point and the 

values are stored in a row vector of k elements, where k is the number of control points.  Next, 

everything inside the curly brackets on the right-hand side of the equation is calculated at all k 

control points using the values 1 to k for m thus creating a k by k matrix.  The complete right-

hand side of equation (2.50) is the sum of the non-dimensional circulation Fourier coefficients 

(Gm) times everything inside the curly brackets.  In matrix notation the sum of the products is 

simply the matrix multiplication of the curly bracket matrix (k by k) with Gm (k by 1).  The built 

in MATLAB® function linsolve is then used to solve for the unknown Gm column vector. 

 

Now that the coefficients for the circulation series (based on the estimate of αi) are known, 

equation (2.51) is used to calculate a new estimate for the distributions of αi and subsequently βi.  

Next, βi is used as the vortex sheet pitch angle distribution.  This leads to new induction factors 

with their own Fourier coefficients.  These new coefficients are used to calculate new a

m
h  and t

m
h  

factors for input again into the Calculate_Gm_and_new_AlphaI.m function.  The values of the 

circulation series coefficients are also used to estimate the axial and tangential velocities in 

equations (2.30) and (2.31).  This process is repeated until the original and new estimate of αi 

agree to within °± 2.0 . 

 

Once there is convergence on the value of αi, the Forces.m function from OpenProp is used.  

This function is shown in Appendix A for completeness, but it was not altered from its most 

recent release.  The forces of note for propeller analysis, as explained in Section 1, are the thrust 

coefficient, the torque coefficient, and the efficiency. 

3.4 Validation of Circulation, Induced Velocity, and Forces Using OpenProp 

OpenProp was chosen to design a propeller because it has been proven to provide accurate 

circulation and induced velocity distributions for a given design point.  OpenProp also designs 

the blade shape and pitch angle based on wing theory.  Therefore it should be possible to use all 
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of the geometric data and the Lerbs method (8) to arrive back at the same circulation and induced 

velocity distributions.  Lerbs modeling of the circulation as a Fourier sine series necessitates that 

the circulation goes to zero at both the hub and blade tip.  For this reason, in designing the 

propeller with the Single Propeller Design option in OpenProp, the “Hub Image Flag” and 

“Ducted propeller” options were both left unchecked. Throughout the validation process, errors 

were discovered with the OpenProp code that affected the way the blades were designed but not 

the calculation of the circulation and induced velocity distributions.   

 

The first error noted was in the calculation of “Vstar” just prior to generating the 

“OpenProp_Performance.txt” reporting file.  This value was supposed to be the magnitude of the 

resultant inflow to the lifting line at each control point non-dimensionalized by the speed of the 

ship.  However, the “ωr” term had units of length over time.  This problem was solved by 

dividing the term by the speed of the ship.  This error also cascaded into the circulation, 

“Gamma”, and the lift coefficient, “Cl”, reported in “OpenProp_Performance.txt” file.  This lift 

coefficient was used by the Geometry.m function to scale the chamber of the mean line.   

 

The next error detected also affects the scaling of the chamber of the mean line.  The Single 

Propeller Design graphical user interface allows the designer to enter the maximum chamber 

divided by chord length for multiple radial positions along the blade.  This information in turn is 

multiplied by the lift coefficient in the Geometry.m function to set a new maximum chamber 

ratio.  According to Abbott (7), the maximum chamber ratio can be scaled by a constant factor to 

produce the desired lift; however, the factor must be as shown in equation (3.2).  In general, if 

the designer inputs an arbitrary maximum chamber distribution, the corresponding lift coefficient 

is unknown and therefore the scaling factor cannot be determined.  This problem was solved for 

this validation run by inputting the maximum chamber ratio for the NACA a=0.8 mean line from 

Appendix II of (7) into the graphical user interface.  This data corresponds to a lift coefficient of 

1.0.  Thus the scaling factor is simply the desired lift coefficient. 
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The final error detected was with the calculation of the pitch angle in OpenProp.  The program 

simply took the “Ideal Angle of Attack” inputted in the graphical user interface and added it to 

the hydrodynamic pitch angle, βi, that was calculated as part of the optimization routine.  As 

described in Abbott (7), if the chamber is scaled by a constant factor to achieve a desired lift, the 

ideal angle of attack must also be scaled by the same factor.  This problem was solved by 

multiplying the ideal angle of attack by the factor in equation (3.2) before determining the pitch 

angle of the foil section. 

 

OpenProp was used to design a single propeller using all of the default settings except for the 

modifications noted above.  The outputs of that design process were then used as inputs to the 

Lerbs method for determining the circulation and induced velocity distributions.  Figure 4 shows 

both the OpenProp and Lerbs method non-dimensional circulation distributions.  Figure 5 show 

the induced velocity components for both the OpenProp and Lerbs method.  Both figures show 

close agreement in the values.  The largest differences occur in at the blade root.  It is possible 

this difference occurs because the Lerbs method forces the circulation to be zero at the hub.  

Even though the option to eliminate hub effects in OpenProp was chosen, the OpenProp 

circulation does not approach zero as quickly as the Lerbs method.  

 

With accurate estimates of the circulation and velocities, the next step is to calculate the resultant 

forces and compare them to the forces calculated in OpenProp.  The values of the thrust 

coefficient, the torque coefficient, and the efficiency from using both the Lerbs method and 

OpenProp are shown in Table 8.  The maximum difference between the values is only 

approximately .1%.  It is concluded that the minor differences in the velocity and circulation 

values have a negligible effect on the forces produced by the propeller. 
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Figure 4:  Non-Dimensional Circulation Comparison 
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Figure 5:  Non-Dimensional Induced Velocities Comparison 
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OpenProp 

Results 
Lerbs  

Method 
Percent  

Difference (%) 
KT 0.220 0.219 0.105 
10*KQ 0.377 0.376 0.038 
Efficiency 0.696 0.695 0.067 
Table 8:  Thrust, Torque, and Efficiency Differences 

 

3.5 MATLAB® Implementation for Determining Propeller Performance 

Characteristics at Off-Design Advance Ratios 

The Some_Open_Water_Characteristics.m function follows essentially the same process 

outlined in Section 3.3.  The only exception is that instead of only looking at just one advance 

ratio value, the function loops through the process for a range of advance ratio values.  For each 

advance ratio, the converged values of αi and βi are used as the initial estimates for the next 

advance ratio.  The inputs to the function are grouped into the following three main categories, 

items contained in the “design” structure defined in OpenProp v3.0, items that are defined by the 

propeller’s geometry but are not part of the “design” structure, and the advance ratio range of 

interest.   

 

Many of the parameters from the “design” structure are defined at a set of control points; 

therefore one of the first pieces of information that is required is the non-dimensional radial 

coordinate of those control points.  The chord over diameter ratio, the hydrodynamic pitch angle, 

the (non-induced) non-dimensional velocity components, and the drag of the foil section must all 

be defined at the control point locations.  Other propeller geometry data from the “design” 

structure that is required includes the hub radius, the number of blades, and the radius of the 

vortex that is shed from the hub.  The last parameters required from the “design” structure are the 

size of the radial increment used to approximate the force integrations, the volumetric mean 

inflow velocity, the hub image flag, and the duct thrust coefficient.  Although the scope of this 

thesis does not include ducted propellers, a value of zero thrust must be entered in order to keep 

the Forces.m function unchanged from OpenProp. 
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The parameters that are not part of the “design” structure but are defined at the control points are 

the pitch over diameter and the maximum chamber ratio distributions.  The diameter of the 

propeller is also required.  The last required input is the advance ratio range over which the 

propeller is to be analyzed. 

 

The value of αi is easily obtained from the information contained in the “design” structure.  

OpenProp provides this information at the design point of the propeller.  Therefore, the 

Open_Water_Characteristics.m function starts at the design advance ratio and then works to 

both extremes of the advance ratio range of interest with a step size of 0.01.  The 

Open_Water_Characteristics.m function calls the Some_Open_Water_Characteristics.m 

function first for the range of advance ratios less than the design value and then again for the 

range above the design value.  After calculating the forces and efficiencies over the entire range, 

the function checks to see if the efficiency ever becomes negative.  This point is where the 

propeller is “wind-milling” and no longer providing any useful thrust to the ship.  The function 

then returns the JS, KT, KQ, and efficiency values for points before the “wind-milling” point. 

 

3.6 Validation of Propeller Performance Characteristics at Off-Design Advance 

Ratios 

The same propeller designed by OpenProp in Section 3.4 was used to validate the propeller 

performance MATLAB® code described in Section 3.5.  The result is shown in Figure 6.  In 

order to determine the robustness of the described in Section 3.5, the code was altered so that it 

would not only start at the design point and work toward the endpoints, but also so it started at 

the lowest value in the advance ratio range and worked up to the highest and vice versa.  In both 

cases, the initial guess of αi (corresponding to the design point) was used.  The results are shown 

in Figure 7.  There is no significant difference in the results of the three methods; therefore the 

method is not very sensitive to the initial guess of αi. 
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Figure 7:  Robustness Results 
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It is important to note that the general shape of the curves in Figure 6 is similar to the examples 

in Woud (6).  However, there is no data for this particular propeller to validate that the values are 

accurate.   Therefore, the numerical accuracy of the program is validated using the DTMB 4119 

propeller.  The DTMB 4119 propeller was chosen for the validation due to its relatively simple 

geometry (it has no rake or skew) and the extensive amount of experimental data available for it.  

The geometric characteristics of the DTMB 4119 propeller as reported by Black (14) are shown 

in Table 9.  This data was entered into OpenProp in the Single Propeller Design GUI shown in 

Figure 8.  The propeller produced by OpenProp with these inputs is shown in Figure 9.  The 

thickness form of the DTMB 4119 propeller is the NACA 66 (DTMB modified).  OpenProp does 

not currently design propellers with this thickness form so the NACA 65A010 form was used 

instead.  Neither OpenProp nor any of MATLAB® function described above use the thickness of 

the blade in any calculations.  Therefore the difference in the thickness forms is not considered a 

problem for the validation of the performance curves 

 

 
Table 9:  Geometry of the DTMB 4119 Propeller 
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Figure 8:  OpenProp Input Parameters for the DTMB 4119 Propeller 
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Figure 9:  OpenProp Representation of the DTMB 4119 Propeller 

 

The propeller performance results for the DTMB 4119 propeller generated by the MATLAB® 

code is shown with the solid lines in Figure 10.  The dashed lines in Figure 10 represent the 

experimentally derived performance values as reported by Hsin and Kerwin in (15).  The X’s in 

Figure 10 represent the performance values produced by the program MIT-PSF-10 when 

neglecting the hub effects as reported in (15).  The Lerbs method, which also neglects the hub 

effects, shows close agreement with the MIT-PSF-10 results.  The most significant differences 

occur in the torque coefficient and efficiency values at low and high values of advance ratio.  

One possible reason for the deviations at low JS values is that the Lerbs method is only valid for 

moderately loaded propellers.  The load increases with decreases in the advance ratio therefore 

some error in this region is expected.  For higher values of JS, the propeller is getting closer to 

the “wind-milling” point discussed in Section 3.5.  At the “wind-milling” point the propeller is 

providing no lift.  Recall that the angle of zero lift is estimated using Munk’s method.  Any 
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deviation between this estimation and the actual angle of zero lift will be seen as the advance 

ratio nears the “wind-milling” point.   
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Figure 10:  DTMB 4119 Propeller Performance Curves 
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4. Conclusions and Recommendations 

4.1 Conclusions 

This thesis successfully implements the methods derived by Lerbs for determining the circulation 

and induced velocity distributions of a propeller using MATLAB® code.  The only requirements 

that are necessary are that the geometry of the propeller and a reasonable estimate of the angle of 

the incoming flow are known.  Furthermore, the circulation and velocities are used to determine 

the thrust coefficient, torque coefficient, and the efficiency of the propeller.  These values are 

calculated at multiple advance ratios in order to produce an open water performance diagram for 

the propeller. 

 

The performance curves show excellent agreement with OpenProp at the design point of the 

propeller.  They also show adequate agreement with experimental and more sophisticated 

numerical programs.  The code and theories presented in this thesis utilize lifting line theory 

which is often used at the early stage of propeller design.  The MATLAB® code explained above 

will give the designer propeller performance information at off-design advance coefficients that 

would normally not be available until more detailed design and modeling was completed.  In 

addition, the performance curves are provided in a matter of one to two minutes.  This allows the 

designer to make changes to the propeller and quickly analyze if they had the desired effect. 

4.2 Recommendations for future work 

One area of future work that would enhance the features of this thesis is the incorporation of this 

work into the OpenProp code.  The code was designed with this feature in mind; therefore it 

should be relative quick to implement.  The only road block is that currently OpenProp does not 

save the variables for the maximum chamber or pitch over diameter distributions.  Since these 

are both calculated in the Geometry.m function, the variables would have to be added as outputs 

to that function and saved with an appropriate name in the main part of the OpenProp code.  The 

user interface would also have to be updated to give the user the option to produce the 

performance curves and the desired advance ratio range.  Obviously, additional output reports 

could also be generated so the performance can be viewed in tabular form as well. 
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Another area of future work to enhance the features of this thesis is in obtaining better estimates 

of the characteristics of the foil sections.  This could be done by building on Peterson’s work (4) 

of having MATLAB® using XFOIL to obtain foil data.  Examples of ways XFOIL can be used 

to improve the accuracy of the model include using it to determine the angle of zero lift, the 

slope of the lift curve, and detailed viscous data for the foils.  XFOIL can also be used to obtain 

cavitation information at any advance ratio.  

 

Another area of future work involves enhancing the Lerbs method to work when the circulation 

at the hub and/or tip of the blade do not go to zero.  This is needed since the hub typically carries 

a certain amount of circulation that is shed in a hub vortex.  Additionally, if the propeller had a 

zero gap duct around it, the circulation at the blade tip would be a non-zero value.  One possible 

way to approach this is using a method of images to create a “virtual” wall at the hub and/or 

blade tip through which no fluid will pass.  It might also be possible to model the circulation not 

as a Fourier sine series, but as a Fourier series of sines and cosines.  This would remove the 

stipulation of the function going to zero at both ends of the blade.  This was explored briefly, and 

it appears that in equation (2.50) there would be two unknown values (the sine and cosine 

coefficients) with only one equation. 

 

One final area for future work involves applying the methods of this thesis to more general cases.  

One thought of how to do this is to first use the Lerbs method to obtain an initial estimate of the 

circulation distribution.  Next, use that to obtain the total inflow velocity.  With this velocity, the 

current method of OpenProp could be utilized to determine the circulation without the 

constraints on the end points of the blade.  After some number of iterations, this could converge 

on a more general solution. 
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Appendix A.  MATLAB® Code 

A.1 Find_Lerb_Induction_Factors.m    
function [ia,it] = Find_Lerb_Induction_Factors (x,xo,g,BetaIo) 
% Function returns values of both the axial and tangential Lerbs induction 
% factors as explained in his paper "Moderately Loaded Propellers with a 
% Finite Number of Blades and an Arbitrary Distribution of Circulation. 
%  
% Inputs: 
% x      = non-dimensional radial coordinate (r/R) of control points. [] 
% xo     = non-dimensional radial coordinate (r/R) of vortex  points. [] 
% g      = number of blades (Z). [] 
% BetaIo = angle that the wake leaves the blade at the vortex points. [rad] 
%  
% Outputs: 
% ia     = axial      induction factor. [] 
% it     = tangential induction factor. [] 
  
% The following come from equations 7 & 7a of Lerbs' paper. 
if xo/x == 0            %if xo/x goes to zero 
    ia = 0; 
    it = g; 
elseif xo/x > 1e10;     %if xo/x goes to infinity 
    ia = g/tan(BetaIo); 
    it = 0; 
elseif xo/x == 1        %if xo/x goes to one 
    ia = cos(BetaIo); 
    it = sin(BetaIo); 
elseif xo > x           %if it is an internal field 
    y  = x ./ (xo .* tan(BetaIo)); 
    yo = 1 ./        tan(BetaIo); 
  
    A2 = -(sqrt(1+y.^2)-sqrt(1+yo.^2)) + .5.*log(((sqrt(1+yo.^2)-1).* ... 
        (sqrt(1+y.^2)+1)) ./ ((sqrt(1+yo.^2)+1).*(sqrt(1+y.^2)-1))); 
  
    B2 = ((1+yo.^2)./(1+y.^2)).^.25 .* ((1./(exp(g.*A2)-1)) + ((1/(2*g))... 
        .*((yo.^2)./((1+yo.^2).^1.5) .* log(1+(1./(exp(g.*A2)-1)))))); 
  
    ia = g*((x/(xo*tan(BetaIo)))*(xo/x - 1)*(1 + B2)); 
    it = g*(xo/x - 1)*B2; 
else  %xo < x            if it is an external field 
    y  = x ./ (xo .* tan(BetaIo)); 
    yo = 1 ./        tan(BetaIo); 
  
    A1 =  (sqrt(1+y.^2)-sqrt(1+yo.^2)) - .5.*log(((sqrt(1+yo.^2)-1).* ... 
        (sqrt(1+y.^2)+1)) ./ ((sqrt(1+yo.^2)+1).*(sqrt(1+y.^2)-1))); 
  
    B1 = ((1+yo.^2)./(1+y.^2)).^.25 .* ((1./(exp(g.*A1)-1)) - ((1/(2*g))... 
        .*((yo.^2)./((1+yo.^2).^1.5) .* log(1+(1./(exp(g.*A1)-1)))))); 
     
    ia = -g*(x/(xo*tan(BetaIo)))*B1; 
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    it = -g*(xo/x - 1)*(1 + B1); 
end %-------------------------------------end of "if, elseif,... statement" 
  
% the following two if statements correct errors that would create negative 
% induction factors 
if ia < 0 
    ia=0; 
end 
if it < 0 
    it=0; 
end 

 

A.2 Calculate_Induction_Fourier_Coefficients.m    
function [In_a, In_t] = Calculate_Induction_Fourier_Coefficients... 
    (ia, it, PHI, PHIo) 
% Function returns values of the fourier coefficients both the axial and  
% tangential Lerbs induction factors as explained in his paper "Moderately 
% Loaded Propellers with a Finite Number of Blades and an Arbitrary 
% Distribution of Circulation. 
%  
% Inputs:  
% ia   = axial      induction factor. [] 
% it   = tangential induction factor. [] 
% PHI  = angular radial coordinate of control points. [deg] 
% PHIo = angular radial coordinate of vortex  points. [deg] 
%  
% Outputs: 
% In_a = Fourier coefficients of the axial      induction factors. [] 
% In_a = Fourier coefficients of the tangential induction factors. [] 
  
  
for k = 1:length(PHI)  %for each control point, k-------------------------- 
    for n = 0:6        %for each fourier coefficient, n-------------------- 
        for m = 1:length(PHIo)        %for each vortex point, k------------ 
            %determine integrand in fourier coefficent integral 
            axial_integrand(m)     = ia(k,m)*cosd(n*PHIo(m)); 
            tangental_integrand(m) = it(k,m)*cosd(n*PHIo(m)); 
        end %-----------------------------------end "for each vortex point" 
         
        %Integrate over PHIo and multiply by appropriate constant 
        if n ==0 | n==6   %if the first of last fourier coefficient 
            In_a(k,n+1) = 1/180*trapz(PHIo,    axial_integrand); 
            In_t(k,n+1) = 1/180*trapz(PHIo,tangental_integrand); 
        else              %if NOT the first of last fourier coefficient 
            In_a(k,n+1) = 2/180*trapz(PHIo,    axial_integrand); 
            In_t(k,n+1) = 2/180*trapz(PHIo,tangental_integrand); 
        end  
    end %--------------------------------end "for each fourier coefficient" 
end %------------------------------------------end "for each control point" 
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A.3 Calculate_hm_factors.m    
function [hm_a, hm_t] = Calculate_hm_factors (PHI, In_a, In_t) 
% Function returns values of both the axial and tangential Lerbs hm factors 
% as explained in his paper "Moderately Loaded Propellers with a Finite 
% Number of Blades and an Arbitrary Distribution of Circulation. 
%  
% Inputs: 
% PHI  = angular radial coordinate of control points. [deg] 
% In_a = Fourier coefficients of the axial      induction factors. [] 
% In_a = Fourier coefficients of the tangential induction factors. [] 
%  
% Outputs: 
% hm_a = factor used to find axial      induced velocity in eqn (17). [] 
% hm_t = factor used to find tangential induced velocity in eqn (17). [] 
  
% Define values used in eqn's (17a), (18a), & (19) 
for k = 1:length(PHI)    %for each control point--------------------------- 
    for n = 0:length(In_t(1,:))-1     %for every fourier coefficient------- 
        cosine_nPHI(n+1) = cosd(n*PHI(k)); 
        sine_nPHI(n+1)   = sind(n*PHI(k)); 
        AxialInductionCoeffient_times_cos_of_nPhi(n+1,k) =... 
            In_a(k,n+1)*cosine_nPHI(n+1); 
        AxialInductionCoeffient_times_sin_of_nPhi(n+1,k) =... 
            In_a(k,n+1)*  sine_nPHI(n+1); 
        TangentialInductionCoeffient_times_cos_of_nPhi(n+1,k) =... 
            In_t(k,n+1)*cosine_nPHI(n+1); 
        TangentialInductionCoeffient_times_sin_of_nPhi(n+1,k) =... 
            In_t(k,n+1)*  sine_nPHI(n+1); 
        n_times_In_a_at_PHI_equal_zero(n+1) = n*In_a(1,n+1); 
        n_times_In_t_at_PHI_equal_zero(n+1) = n*In_t(1,n+1); 
        n_times_In_a_times_cosine_n180(n+1) = n*In_a(end,n+1)*cosd(n*180); 
        n_times_In_t_times_cosine_n180(n+1) = n*In_t(end,n+1)*cosd(n*180); 
    end %-------------------------------end "for every fourier coefficient" 
     
    % Evaluate eqn's 17a), (18a), & (19) as appropriate for each blade 
    % section (i.e for each control point) 
    for m = 1:length(In_t(1,:))-2   %for all Fourier Coefficents -2 ------- 
        if     PHI(k) == 0     %If the control point is at the hub 
            hm_a(m,k) = pi*(m*sum(In_a(k,1:m)) +...  
                sum(n_times_In_a_at_PHI_equal_zero(m+1:end))); 
            hm_t(m,k) = pi*(m*sum(In_t(k,1:m)) +... 
                sum(n_times_In_t_at_PHI_equal_zero(m+1:end))); 
        elseif PHI(k) == 180   %If the control point is at the tip 
            hm_a(m,k) = -pi*cosd(m*180)*...  
                (m*sum(In_a(k,1:m).*cosine_nPHI(1:m)) +... 
                sum(n_times_In_a_times_cosine_n180(m+1:end))); 
            hm_t(m,k) = -pi*cosd(m*180)*...  
                (m*sum(In_t(k,1:m).*cosine_nPHI(1:m)) +... 
                sum(n_times_In_t_times_cosine_n180(m+1:end))); 
        else                   %If the control point is anywhere else 
         hm_a(m,k) = (pi/sind(PHI(k)))*(sind(m*PHI(k))*...  
           sum(     AxialInductionCoeffient_times_cos_of_nPhi(1:m,k))... 
           + cosd(m*PHI(k))*...  
           sum(     AxialInductionCoeffient_times_sin_of_nPhi(m+1:end,k))); 
        hm_t(m,k) = (pi/sind(PHI(k)))*(sind(m*PHI(k))*...  
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           sum(TangentialInductionCoeffient_times_cos_of_nPhi(1:m,k))... 
           + cosd(m*PHI(k))*...  
           sum(TangentialInductionCoeffient_times_sin_of_nPhi(m+1:end,k))); 
        end 
    end %------------------------------end "for all Fourier Coefficents -2" 
end %-------------------------------------------end"for each control point" 

 

A.4 Calculate_Angle_of_Zero_Lift.m    
function alphao = Calculate_Angle_of_Zero_Lift (fo_over_c) 
% Function takes as input the maximum camber over chord ratio (could be 
% scalar or vector containing fo/c values at all of the points of interest. 
% It returns an approximate value of thet the angle of zero lift in degrees 
% for the NACA a=0.8 meanline (the meanline can be changed if needed) 
% using the equations derived by Munk as presented in "Theory of Wing 
% Sections" by Abbott and Doenhoff on page 72 of the second edition 
%  
% Inputs: 
% fo_over_c = vector or scalar of fo/c at control points. [] 
%  
% Outputs: 
% alphao    = vector or scalar of angles of zero lift. [deg] 
  
% NACA a=0.8 meanline data downloaded from http://www.pdas.com/avd.htm and 
% verified with Abbott and Doenhoff 
x = [0, 0.5, 0.75, 1.25, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35, 40, 45,... 
    50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100] / 100; 
y = [0, 0.287, 0.4035, 0.6158, 1.0768, 1.8408, 2.4826, 3.0426, 3.9852,... 
    4.748, 5.3672, 5.8631, 6.2478, 6.5283, 6.7086, 6.7896, 6.7696,... 
    6.6442, 6.4049, 6.037, 5.5139, 4.7713, 3.6826, 2.4349, 1.1626 ,0] /100; 
  
% NACA 64 data used to test code by verifying angle of zero lift for NACA 
% 6409 in XFOIL 
% x = [0, 0.5, 0.75, 1.25, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35, 40, 45,... 
%     50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]/100; 
% y = [0, 0.1491, 0.2229, 0.3691, 0.7266, 1.4063, 2.0391, 2.625, 3.6562,... 
%     4.5, 5.1563, 5.625, 5.9063, 6, 5.9583, 5.8333, 5.625, 5.3333,... 
%     4.9583, 4.5, 3.9583, 3.3333, 2.625, 1.8333, 0.9583, 0]/100; 
  
% Define Monk's coeeficients (kn) and foil locations (xn) 
xn = [.99458, .87426, .5, .12574, .00542]; 
kn = [1252.24; 109.048; 32.5959; 15.6838; 5.97817]; 
  
for m = 1:length(fo_over_c)  %for each foil section inputted--------------- 
    %scale the tabulated data based on inputed fo/c 
    fscale(m) = fo_over_c(m) / max(y); 
    MeanLineOrdinates(m,:) = fscale(m)*y; 
     
    %create meanline function and evaluate at locations specified by Monk 
    yn(m,:) = pchip(x, MeanLineOrdinates(m,:), xn);  
     
    %evaluate angle of zero lift using Monk's equation.  The negative sign 
    %is dropped because the program requires the magnitude of the angle 
    alphao(m) = yn(m,:)*kn; 
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end %---------------------------------end "for each foil section inputted" 
 

A.5 Calculate_Gm_and_new_AlphaI.m    
function [Gm, wa_over_v, wt_over_v, alphaI_new, BetaI_new] =... 
    Calculate_Gm_and_new_AlphaI... 
    (PSIstar,alphao,Beta,alphaI,dCLda,s,x,Lambda, PHI, g,xh,hm_a,hm_t) 
% Function returns an estimation of the fourier coefficients for the 
% circulation function (eqn.15), an estimation of the angle alphaI (see fig 
% 18), and an estimation of BetaI (see figure 18) based on the inputted 
% guess of alphaI as explained in his paper "Moderately Loaded Propellers 
% with a Finite Number of Blades and an Arbitrary Distribution of  
% Circulation.  The other inputs are necessary values to calcualate the 
% estimation. 
%  
% Inputs: 
% PSIstar = pitch angle. [deg] 
% alphao  = angle of zero lift (see figure 18).  [deg] 
% Beta    = angle of inflow neglecting the induced velocities(fig 18).[deg] 
% alphaI  = hydrodynamic pitch angle minus Beta (see figure 18). [deg] 
% dCLda   = slope of the lift as a function of angle of attack. [1/deg] 
% s       = propeller solidity @ each control point. [] (p104) 
% x       = non-dimensional radial coordinate (r/R) of control points. [] 
% Lambda  = advance coefficient divided by pi. [] (p.111) 
% PHI     = angular radial coordinate of control points. [deg] 
% hm_a    = factor used to find axial      induced velocity in eqn (17). [] 
% hm_t    = factor used to find tangential induced velocity in eqn (17). [] 
%  
% Outputs: 
% Gm         = est. of the fourier coeff for eqn 15 (circulation). [] 
% wa_over_v  = axial induced velocity nondimensionalized by advance speed[] 
% wt_over_v  = tangential induced vel nondimensionalized by advance speed[] 
% alphaI_new = estimation of the angle alphaI. [deg]  (see fig 18) 
% BetaI_new  = estimation of the angle BetaI.  [deg]  (see fig 18) 
  
  
% "First Equation"  p 104-------------------------------------------------- 
% left hand side 
  
% AngleSum is the angle that is used on both sides of the "first equation" 
AngleSum = (PSIstar+alphao-Beta)-alphaI;  %[deg] 
  
% Solve for the LHS of the "first equation" at each blade section 
LHS1 = dCLda.*s.*(x./Lambda).*AngleSum;   %LHS at all specified radii. []  
  
% Right hand side 
% the right hand side is the sum of the non-dimensional circulation fourier 
% coefficients (Gm) times the the "RHS1" eqn shown below. In matrix 
% notation the sum of the products is simply the matix multiplication of Gm 
% and the RHS1.  For Linsolve to work the unknown (Gm) must be the 
% second term in the multiplication, therefore RHS1 [kxm] * Gm [mx1] 
  
for k = 1:length(PHI)     %for each control point (i.e each blade section)- 
    for m = 1:length(PHI) %for each fourier coefficient (must = # of CP's)- 
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        % Solve for the RHS of the "first equation" at each blade section 
        RHS1(k,m) = (2*g*sind(m*PHI(k))*cosd(Beta(k)+alphaI(k)))+... 
            (((m*hm_t(m,k))/(1-xh))*dCLda*s(k)*AngleSum(k)); 
         
    end %--------------------------------end "for each fourier coefficient" 
end %------------------------------------------end "for each control point" 
  
% Solve the "first equation" for Gm 
% LHS1' = RHS1 * Gm                  [kx1] = [kxm]*[mx1] 
% X = linsolve(A,B) solves the linear system A*X = B 
Gm = linsolve(RHS1,LHS1'); 
% --------------------------------------------------end of "First Equation" 
  
% "Second Equation"-------------------------------------------------------- 
% Preliminary calculations for the sums in the numerator and denominator 
Gm_times_hm_a = Gm'*hm_a; 
Gm_times_hm_t = Gm'*hm_t; 
for m = 1:length(PHI)   % for each control point--------------------------- 
    % Calculate the "sum" portion of the numerator and denominator for each 
    % blade section.  The hm_x matrices must have at least as many rows as 
    % there are blade sections (also called control points) 
    axial_sumation_component(m,:) = m*hm_a(m,:); 
    tangential_sumation_component(m,:) = m*hm_t(m,:); 
end %------------------------------------------end "for each control point" 
axial_sumation      = Gm'*     axial_sumation_component; 
tangential_sumation = Gm'*tangential_sumation_component; 
% calculate induced velocities using equations 17 & 18.  These will be 
% needed for use in the "forces" function. 
wa_over_v = (1/(1-xh))*     axial_sumation; 
wt_over_v = (1/(1-xh))*tangential_sumation; 
numerator   = ones(size(axial_sumation)) + wa_over_v; 
denominator =(x/Lambda)                  - wt_over_v; 
  
%Calculate vector of values for the RHS of "second equation".  There is one 
%value for each blade section and they are all non-dimensional. 
RHS2 = numerator./denominator; 
  
% LHS2 = tan(Beta+alphaI) = tan(BetaI) 
alphaI_new = atand(RHS2)-Beta; 
BetaI_new  = atand(RHS2); 
% --------------------------------------------------end of "Second Equation 

 

A.6 Forces.m    
% ========================================================================= 
% ========================================================= Forces Function 
% 
% This function computes the thrust, torque, and power coefficients, and it 
% computes the efficiency of the propeller, Kerwin eqns 161-162, p.138, and 
% eqns 196-197, p. 152 
% 
% ------------------------------------------------------------------------- 
% Input Variables: 
    % CD        [ ],    section drag coefficient 
    % RV        [ ],    radius of vortex point / propeller radius 
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    % VAC       [ ],    axial inflow velocity at control points / ship 
velocity 
    % TANBC     [ ],    tangent of beta at the control points 
    % UASTAR    [ ],    axial      induced velocity / ship velocity 
    % UTSTAR    [ ],    tangential induced velocity / ship velocity 
    % CoD       [ ],    section chord length / propeller diameter 
    % G         [ ],    circulation / (2*pi * prop radius * ship velocity) 
    % RC        [ ],    radius of control point / propeller radius 
    % H_flag    [ ],    hub image flag (1 = yes, 0 = no) 
    % Rhv       [ ],    hub vortex radius / hub radius 
    % Z         [ ],    number of blades 
    % CTD       [ ],    CT for the duct 
% 
% Auxilary variables: 
    % DR, VTSTAR, VASTAR, VSTAR, 
    % CTH       [ ],    hub image thrust coefficient 
% 
% Output variables: 
    % CT        [ ],    thrust coefficient, eqn (161) p.138 
    % CQ        [ ],    torque coefficient, eqn (161) p.138 
    % CP        [ ],    power coefficient based on torque 
    % KT        [ ],    thrust coefficient, eqn (162) p.138 
    % KQ        [ ],    torque coefficient, eqn (162) p.138 
    % EFFY      [ ],    efficiency 
    % TAU       [ ],    trust ratio 
% 
% ------------------------------------------------------------------------- 
  
function [CT,CQ,CP,KT,KQ,EFFY,TAU] = Forces(RC,DR,VAC,VTC,UASTAR,UTSTAR,... 
                                            CD,CoD,G,Z,Js,VMIV,         ... 
                                            H_flag,Rhv,CTD) 
  
VASTAR    =            VAC + UASTAR;      % total axial      inflow vel. / 
ship vel. 
VTSTAR    = pi*RC/Js + VTC + UTSTAR;      % total tangential inflow vel. / 
ship vel. 
VSTAR     = sqrt(VTSTAR.^2 + VASTAR.^2);  % magnitude of the inflow vel. / 
ship vel. 
  
sin_BetaI = VASTAR./VSTAR; 
cos_BetaI = VTSTAR./VSTAR; 
  
% ----------------------- Compute CT and CQ, Kerwin eqns. (196-197), p. 152 
CT = 4*Z*sum((VSTAR.*G'.*cos_BetaI - 
(1/(2*pi)).*VSTAR.^2.*CoD.*CD.*sin_BetaI)    .*DR); 
CQ = 4*Z*sum((VSTAR.*G'.*sin_BetaI + 
(1/(2*pi)).*VSTAR.^2.*CoD.*CD.*cos_BetaI).*RC.*DR); 
  
% ----------------- Compute hub effect on thrust coefficient (Kerwin p.181) 
if H_flag == 1 
    CTH = -0.5*(log(1/Rhv)+3)*(Z*G(1))^2;           % Kerwin eqn 260, p.184 
else 
    CTH = 0; 
end 
  
CT   = CT + CTH + CTD;      % eqn 196, p.152 (w/ addition for duct thrust 
CTD) 
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CP   = CQ*pi/Js;            % power coefficient based on torque 
KT   = CT*Js^2*pi/8;        % eqn 167, p.139 
KQ   = CQ*Js^2*pi/16;       % eqn 167, p.139 
EFFY = CT*VMIV/CP;          % efficiency 
TAU  = (CT-CTD)/CT;         % thrust ratio 
% 
% ===================================================== END Forces Function 
% ========================================================================= 

 

A.7 Some_Open_Water_Characteristics.m    
function [KT, KQ, EFFY] = Some_Open_Water_Characteristics... 
    (design, JsRange, PoD_input, fo_over_c_input, D) 
% This function returns estimations of the thrust and torque coefficients, 
% along with the efficiency of a propeller using a method developed by  
% Lerbs to determine the circulation and induced velocity as presented in  
% his paper "Moderately Loaded Propellers with a Finite Number of Blades   
% and an Arbitrary Distribution of Circulation".  The inputs required by 
% the function are grouped into two main categories, propeller geometry  
% and the operating conditions.  The inputs are explained in more detail 
% below. 
%  
% Inputs contained in "design" 
% design.CoD     = Chord over diameter at control points. [] 
% design.BetaIC  = Hydrodynamic pitch angle at control points. [rad] 
% design.VAC     = Axial      speed at control points. [] 
% design.VTC     = Tangential speed at control points. [] 
% design.Rhub_oR = Hub radius (rh/R). [] 
% design.Z       = Number of propeller blades (g). [] 
% design.RC      = Radial oordinate of control points (r/R). [] 
% design.DR      = Integration increment for force calculation. [] 
% design.CD      = Section drag coefficient. [] 
% design.VMIV    = Volumetric Mean Inflow Velocity. [] 
% design.H_flag  = Hub image flag (1 = yes, 0 = no). [] 
% design.Rhv     = Hub vortex radius / hub radius. [] 
% design.CTD     = Thrust coefficient for the duct. [] 
% 
% Inputs NOT contained in "design" 
% PoD_input       = Pitch over Diameter ratios at control points. [] 
% fo_over_c_input = Maximum chamber divided by chord at control points. [] 
% D               = Propeller diameter. [length] 
% JsRange         = Range of advance ratios to analyze. [] 
% ***note: Lerb equations lambda = Js/pi and it is referenced to Va not Vs. 
% ***Assume Va=Vs since it is an open water curve 
% 
% Outputs 
% KT   = Propeller thrust coefficient. [ ] 
% KQ   = Propeller torque coefficient. [ ] 
% EFFY = Propeller efficiency. [ ] 
  
% Unpack necessary values from "design" 
CoD_input =  design.CoD; 
Beta_input = atand(design.TANBC); 
BetaI_input = rad2deg(design.BetaIC); 
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VAC_input = design.VAC; 
VTC_input = design.VTC; 
xh = design.Rhub_oR; 
g = design.Z; 
R = .5*D; 
  
% Values that don't change with design------------------------------------- 
% Theoretical slope of the lift as a function of angle of attack. [1/deg] 
dCLda = 2*pi*(pi/180); 
% Angular radial coordinate of control and vortex points. [deg] 
PHI  = [30,60,90,120,150]; 
PHIo = [0,30,60,90,120,150,180]; 
% Non-dimensional radial coordinate (r/R) of control and vortex points. [] 
x    = .5*(1+xh) - .5*(1-xh)*cosd(PHI);    %eqn 14 P.90 
xo   = .5*(1+xh) - .5*(1-xh)*cosd(PHIo); 
% -------------------------------end "Values that don't change with design" 
  
% Interpolate data at contol points---------------------------------------- 
CoD       = pchip(design.RC, CoD_input,       x); 
Beta      = pchip(design.RC, Beta_input,     xo); 
BetaI     = pchip(design.RC, BetaI_input,    xo); 
VAC       = pchip(design.RC, VAC_input,       x); 
VTC       = pchip(design.RC, VTC_input,       x); 
PoD       = pchip(design.RC, PoD_input,       x); 
fo_over_c = pchip(design.RC, fo_over_c_input, x); 
% ----------------------------------end "Interpolate data at contol points" 
  
% Calculate other values and angles necessary for analysis----------------- 
s = g*CoD/pi;                      %vector of prop solidity at CPs (p104) 
Pitch   = PoD*D;                   %Pitch       at specified radii [length] 
PSIstar = atand(Pitch./(2*pi*x*R));%Pitch angle at specified radii [deg] 
  
% Calculate angles based on figure 18 (page 94) from Lerbs 
alphao     = Calculate_Angle_of_Zero_Lift (fo_over_c);   % [deg] 
BetaIo_deg = BetaI;               % Assume wake comes off at angle of BetaI 
BetaIo     = deg2rad(BetaIo_deg); % Angle of helical wake. [rad] 
% ------------------------------------------end "Calculate other values..." 
  
for Js_index = 1:length(JsRange) % For Js_index---------------------------- 
    Js = JsRange(Js_index);       % Advance ratio [] 
    Lambda = Js/pi;               % Advance coefficient [] 
    Beta = atand(VAC./(pi.*x./Js + VTC));  % [deg] 
    alphaI = BetaI(2:end-1)-Beta; % Differance between BetaI and Beta [deg] 
  
    % Set up values for "While loop" iteration 
    interation_counter = 0;   % Counter for the number of iterations. [] 
    interation_max = 40;      %Maximum number of iterations. [] 
    alphaI_new = alphaI*100;  %Initial setting to ensure loop starts. [deg] 
    alphaI_next_loop = alphaI;%Set value to be used in the first loop [deg] 
     
    % Print which advance ratio value is being calculated so the user knows 
    % where they are at in the process 
    fprintf(['Calculating circulation for J = ',num2str(Js), '  ']); 
  
    % While Loop----------------------------------------------------------- 
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    % Input estimate of alphaI to calculate estimate of non-dimensional  
    % fourier coeffiecents of circulation.  Use those coefficients to  
    % determine new estimate of alphaI and interate until the new estimate  
    % and the original estimate of alphaI differ by less than .2 degrees or  
    % the maximum number of iterations is reached. 
    while (interation_counter<=interation_max) &&... 
            any(abs(alphaI-alphaI_new)>.2) 
         
        %Print rotating clock to screen so the user knows the program is 
        %"thinking" 
        if rem(interation_counter,4) == 0 
            fprintf('\b|'); 
        else if rem(interation_counter,4) == 1 
                fprintf('\b/'); 
            else if rem(interation_counter,4) == 2 
                    fprintf('\b-'); 
                else fprintf('\b\\'); 
                end 
            end 
        end %-------------------------------------------end rotating clock 
         
        alphaI = alphaI_next_loop; 
  
        for n = 1:length(x)      %for each control point, n---------------- 
            for m = 1:length(xo)      %for each vortex  point, m----------- 
                [ia(n,m), it(n,m)] = Find_Lerb_Induction_Factors... 
                    (x(n),xo(m),g,BetaIo(m)); 
            end %-------------------------------end "for each vortex point" 
        end %----------------------------------end "for each control point" 
  
        [In_a, In_t]= Calculate_Induction_Fourier_Coefficients... 
            (ia, it, PHI, PHIo); 
  
        [hm_a, hm_t]= Calculate_hm_factors (PHI, In_a, In_t); 
  
        [Gm, wa_over_v,wt_over_v, alphaI_new, BetaI_new] =... 
          Calculate_Gm_and_new_AlphaI... 
         (PSIstar,alphao,Beta,alphaI,dCLda,s,x,Lambda,PHI,g,xh,hm_a, hm_t); 
  
        % Set up values for next iteration 
        BetaI  = BetaI_new; 
        BetaI = pchip(x, BetaI, xo); 
        BetaIo = deg2rad(BetaI);   %assume wake comes off at angle of BetaI 
        %Set alphaI to average of new and old distribution (see page 109) 
        alphaI_next_loop = (alphaI_new+alphaI)/2; 
        interation_counter = interation_counter +1;  % Increment counter 
    end %----------------------------------------------------end While Loop 
     
    fprintf('\b\n');   % set up for next line in screen output 
  
    % Calculate Non-dimensional circulation (G) from fourier coefficients 
    for m = 1:length(PHI) 
        sine_of_m_times_PHI(m,:) = sind(m*PHI); 
    end 
    Lerbs_G_coarse = Gm'*sine_of_m_times_PHI; %G from eqn 15. [] 
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    % Prepare variables for "Forces" function 
    Lerbs_G = pchip(x, Lerbs_G_coarse, design.RC); 
    uastar  = pchip(x, wa_over_v     , design.RC); 
    utstar  = pchip(x, wt_over_v     , design.RC); 
  
    [CT,CQ,CP,KT(Js_index),KQ(Js_index),EFFY(Js_index),TAU] =... 
        Forces(design.RC, design.DR , design.VAC, design.VTC,uastar,... 
         -utstar,design.CD, design.CoD,Lerbs_G',design.Z,Js,design.VMIV,... 
         design.H_flag, design.Rhv, design.CTD); 
  
%     disp(['The number of iterations for Js = ',num2str(Js),... 
%         ' was: ',num2str(interation_counter)]), 
  
end %---------------------------------------------------end "J_index" loop 
 
 

A.8 Open_Water_Characteristics.m    
function [Js, KT, KQ, EFFY] = Open_Water_Characteristics... 
    (design, Js_low, Js_high, PoD_input, fo_over_c_input, D) 
% This function returns the advance ration and estimations of the 
% corresponding thrust and torque coefficients, along with the efficiency  
% of a propeller using a method developed by Lerbs to determine the  
% circulation and induced velocity as presented in his paper  
% "Moderately Loaded Propellers with a Finite Number of Blades and an  
% Arbitrary Distribution of Circulation".  The inputs required by 
% the function are grouped into two main categories, propeller geometry  
% and the operating conditions.  The inputs are explained in more detail 
% below.  The function starts at the propellers design point and works to 
% Js_low in increments of .01.  Next, it starts at the design point again 
% and works to Js_high in increments of .01.  If the efficiency drops below 
% zero, the data is disregarded. 
%  
% Inputs contained in "design" 
% design.Js      = Advance ratio at the design point. [] 
% design.CoD     = Chord over diameter at control points. [] 
% design.BetaIC  = Hydrodynamic pitch angle at control points. [rad] 
% design.VAC     = Axial      speed at control points. [] 
% design.VTC     = Tangential speed at control points. [] 
% design.Rhub_oR = Hub radius (rh/R). [] 
% design.Z       = Number of propeller blades (g). [] 
% design.RC      = Radial oordinate of control points (r/R). [] 
% design.DR      = Integration increment for force calculation. [] 
% design.CD      = Section drag coefficient. [] 
% design.VMIV    = Volumetric Mean Inflow Velocity. [] 
% design.H_flag  = Hub image flag (1 = yes, 0 = no). [] 
% design.Rhv     = Hub vortex radius / hub radius. [] 
% design.CTD     = Thrust coefficient for the duct. [] 
% 
% Inputs NOT contained in "design" 
% PoD_input       = Pitch over Diameter ratios at control points. [] 
% fo_over_c_input = Maximum chamber divided by chord at control points. [] 
% D               = Propeller diameter. [length] 
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% Js_low          = Low  value in range of advance ratios to analyze. [] 
% Js_high         = High value in range of advance ratios to analyze. [] 
% ************************************************************************* 
% note(1): Lerb equations lambda = Js/pi and it is referenced to Va not Vs. 
%          Therefore assume Va=Vs since it is an open water curve 
% note(2): Js_low must be greater than zero for the function to work. 
% ************************************************************************* 
%  
% Outputs 
% Js   = advance coefficients from Js_low to Js_high in increments of .01[] 
% KT   = Propeller thrust coefficients. [ ] 
% KQ   = Propeller torque coefficients. [ ] 
% EFFY = Propeller efficiencys. [ ] 
  
% Set ranges of Js based on Js_low, Js_high, and the design Js 
JsRange_low  = design.Js:-.01:Js_low; 
JsRange_high = design.Js: .01:Js_high; 
  
% Call the Some_Open_Water_Characteristics function for each range 
[KT_low , KQ_low , EFFY_low]  = Some_Open_Water_Characteristics... 
    (design, JsRange_low,  PoD_input, fo_over_c_input, D); 
[KT_high, KQ_high, EFFY_high] = Some_Open_Water_Characteristics... 
    (design, JsRange_high, PoD_input, fo_over_c_input, D); 
  
% determine Js value where efficiency becomes negative 
first_negative_index = find((EFFY_high-abs(EFFY_high)),1,'first'); 
  
% Disregard data if efficiency becomes negative 
if isempty (first_negative_index)  %if efficiency never becomes negative--- 
    Js   = [fliplr(JsRange_low), JsRange_high(2:end)]; 
    KT   = [fliplr(KT_low)     , KT_high(2:end)]; 
    KQ   = [fliplr(KQ_low)     , KQ_high(2:end)]; 
    EFFY = [fliplr(EFFY_low)   , EFFY_high(2:end)]; 
else                               %if eficiency DOES become negative------ 
    Js   = [fliplr(JsRange_low), JsRange_high(2:(first_negative_index-1))]; 
    KT   = [fliplr(KT_low)     , KT_high(2:(first_negative_index-1))]; 
    KQ   = [fliplr(KQ_low)     , KQ_high(2:(first_negative_index-1))]; 
    EFFY = [fliplr(EFFY_low)   , EFFY_high(2:(first_negative_index-1))]; 
end %------------------------------------------end "if...else..." statement 
 
 


