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ABSTRACT 
 
 
An analysis tool for calculating minimum pressure envelopes was developed using XFOIL. This 
thesis presents MATLAB® executables that interface with a modified version of XFOIL for 
determining the minimum pressure of a foil operating in an inviscid fluid.  The code creates 
minimum pressure envelopes, similar to those published by Brockett (1965).  XFOIL, developed 
by Mark Drela in 1986, is a design system for Low Reynolds Number Airfoils that combines the 
speed and accuracy of high-order panel methods with fully-coupled viscous/inviscid interaction.  
XFOIL was altered such that it reads in command line arguments that provide operating 
instructions, rather than by an operator interation via menu options.  In addition, all screen output 
and plotting functions were removed.  These modifications removed XFOIL’s user interface, and 
created a “black box” version of XFOIL that would perform the desired calculations and write 
the output to a file. These modifications allow rapid execution and interface by an external 
program, such as MATLAB®.  In addition, XFOIL’s algorithms provide a significant 
improvement in the accuracy of minimum pressure prediction over the method published by 
Brockett. 
 
Development of the modified XFOIL and MATLAB® interface contained in this thesis is 
intended for future interface with Open-source Propeller Design and Analysis Program 
(OpenProp).  OpenProp is an open source MATLAB®-based suite of propeller design tools.  
Currently, OpenProp performs parametric analysis and single propeller design, but does not 
perform cavitation analysis.  Minimum pressure envelopes provide the propeller designer 
information about operating conditions encountered by propellers.  The code developed in this 
thesis allows the designer to rapidly assess cavitation conditions while in the design phase, and 
make modifications to propeller blade design in order to optimize cavitation performance.  A 
methodology for design is discussed outlining future integration with OpenProp. 
 
Thesis Supervisor: Prof. Patrick Keenan 
Title: Professor of Naval Architecture 
 
Thesis Supervisor: Richard W. Kimball 
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1 Introduction 
The study of propeller cavitation and its inception is an important aspect of propeller 

design.  In order to accurately predict cavitation inception, it is necessary to be able 

to determine the actual pressure distribution in the fluid.  By comparing the pressure 

coefficient to the local cavitation number, an estimate of the local cavitation 

conditions may be made.  This is often accomplished by determining the fluid 

velocity distribution in the fluid, and then using the velocity to calculate local 

pressure conditions.  Specifically, the pressure distribution is desired along the 

upper and lower surfaces of the foil in order to determine lift, drag, moment, and 

cavitation inception. 

An early approach to this problem was to assume that the working fluid was 

inviscid.  This assumption allowed the use of potential flow theory to calculate 

velocity as a function of location within the fluid.  However, this method was limited 

to very simple shapes, such as a two-dimensional cylinder.  Potential theory lacked 

the ability to directly calculate the fluid velocities around complex geometries such 

as foil surfaces. 

Conformal mapping provided a method by which the exact velocity distribution could 

be calculated for certain types of foil shapes.  However, exact conformal 

transformations for all foil shapes are not possible.  Although various 

transformations have been introduced, this project uses the Karman-Trefftz foil as a 

comparison for numerical approaches.  To further extend the use of conformal 

transformations, numerical approaches were developed to approximate the 

mapping function for foils of arbitrary shape.  

An improved approach to obtain an accurate estimate of the actual pressure 

distribution on two-dimensional foils of arbitrary shape was developed by Brockett 

[1].  Brockett’s work was based on the work of Moriya [2] which is an approximate 

conformal transformation of the circle to an airfoil profile and gives equations for the 

velocity distribution.  Brockett published a FORTRAN computer program that would 
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accept foil ordinate input, in various formats, and calculate the velocity and pressure 

distributions at a specified angle of attack or lift coefficient. 

The purpose of this report is to present a modified approach to the work of Brockett, 

and present an improved method for computing the minimum pressure envelopes of 

a foil.  As a reference, Brockett’s method of calculating the minimum pressure 

distribution was programmed into MATLAB.   Sample input provided by Brockett 

was used to verify accuracy of the MATLAB version of Brockett’s work.  

A modified approach using the two-dimensional panel method of XFOIL is 

presented.  Rather than using the approximate conformal transformation method 

presented by Brockett, a modified version of XFOIL was used to perform the 

calculations for pressure distribution.  The modified XFOIL executable removed all 

interactive user interfaces, including menu driven options and interactive screen 

output.  In addition, desired output is saved as a text file, rather than plotting to the 

screen.  The development of the modified XFOIL executable allows the use of an 

external program, in this case MATLAB, to call XFOIL to perform the desired 

calculations.  The results are then saved as a text file, and may be read in by 

MATLAB, which conducts the desired analysis and output.  

A Karman-Trefftz foil was used as a reference for comparison.  The analytic solution 

for the pressure distribution on the foil was used as the baseline to which the 

numerical methods were compared.  The method presented using XFOIL to 

conduct calculations is nearly indistinguishable from the analytic solution, a 

significant improvement over the Brockett method that underestimated the minimum 

pressure by 28% at a high angle of attack (10°). 

The intention of this project was to develop an improved method for computing 

minimum pressure envelopes for an arbitrary foil shape.  In addition, it was 

developed such that this method would be integrated into the Open-source 

Propeller Design and Analysis Program (OpenProp).  OpenProp is an open source 

MATLAB®-based suite of propeller design tools.  OpenProp currently performs 
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parametric analysis and single propeller design, but does not perform cavitation 

analysis.  The development of the MATLAB code in this project would aid the 

designer in the rapid design of propellers by providing a quick method to predict 

cavitation performance of a propeller, and allow the analysis of cavitation 

performance early in the design process.  Conceptual implementation will be 

discussed later in this report. 
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2 Conformal Transformations 
2.1 History 
Prior to the development of the computer, obtaining an accurate solution for the flow 

around a complex shape was a challenging task.  The development of conformal 

transformations was therefore of great benefit, as it provided an analytic solution for 

the exact inviscid flow solution to a select number of foil shapes.  This method was 

developed by Joukowski in 1914. Karman and Trefftz then introduced a more 

general mapping function, which was a special case of the Joukowski 

transformation.  Theodorsen [3] then built upon this work and developed an 

approximate numerical technique for obtaining the mapping function of an arbitrary 

foil shape.  These developments ultimately led to the work of Brockett, and his 

development of the design charts published in 1966[4]. 

2.2 Use of Conformal Transformations 
Although a detailed explanation of conformal transformations is not warranted here, 

the motivation of this project deserves a brief description of the procedure of 

conformal transformations, in order to highlight the significant improvements of the 

work presented.  The below derivation is an adaptation of reference [5] 

Potential flow solution for a two-dimensional cylinder is easily described and 

understood.  It consists of a source-sink dipole, oriented by the direction of the 

uniform stream.  This produces streamlines that define the two-dimensional shape 

shown in Figure 1. 
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Figure 1: Potential Flow Solution for 2-D Cylinder 
The Karman-Trefftz transformation maps a complex point z, where z = X + i*Y, from 

the Z-Plane to a point ζ using equation (2.1) below.  
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In order to map the circle into the ζ-plane, the Kaman-Trefftz method requires that 

the circle center be defined by xC  and yC.  Also, the trailing edge angle, τ, is defined 

in degrees and related by 2 180! "= # .  Finally, a, which is the X-intercept, is set 

equal to unity.  The foil in Figure 2 below was developed by defining xC = -0.1 and 

yC= 0.15, and τ = 10°.  In addition, an angle of attack may be specified, however, in 

Figure 1 and Figure 2, the angle of attack is zero.  Lastly, the circulation is set in 

order to meet the Kutta condition to ensure smooth flow leaving the trailing edge. 

 

Figure 2:  Karman-Trefftz Foil and Streamlines 
To evaluate the velocity and calculate the pressure distribution for the ideal fluid 

flow over the foil surface, the velocities in the ζ-Plane were evaluated using 

Equation (2.3), and the pressure coefficient, Cp, was calculated using Equation 

(2.4), where q is the absolute velocity, and U is the free stream velocity. 
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Since the Karman-Trefftz foil provides an analytic solution for the potential flow 

around the mapped foil, it provides an exact solution to which numerical methods 

may be compared.  Figure 3 shows the analytic pressure distribution for the 

Karman-Trefftz foil shown in Figure 2. 
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Figure 3:  Karman-Trefftz Foil Pressure Distribution. 
The analysis above is the result of the MATLAB script contained in Appendix A:  

Matlab Script for Conformal Transformation of Karman-Trefftz Foil.  This script also 

generates and exports data for further analysis. 
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3 Brockett’s Analysis 
3.1 Introduction to Brockett’s Analysis 
In reference [1], Brockett developed a computer code to evaluate the steady two-

dimensional pressure distribution on arbitrary foils, and presented the results.  This 

code is based on an approximate potential theory suggested by Moriya which is 

empirically modified in a manner suggested by Pinkerton to give an arbitrary lift for a 

set incidence, while satisfying the Kutta condition.  Interpolation functions for the 

ordinates were used to reduce the calculations to a straight-forward numerical 

procedure.  Brockett presents a FORTRAN computer program, which, as part of this 

thesis, was rewritten as a MATLAB script in order to facilitate simple input and 

output.  The original code was left unaltered as much as possible, such that the 

algorithms were left intact.  The only significant changes are the method in which 

data was fed to the program, and the programming structure as required by 

MATLAB.  Also, MATLAB allows variables to be defined by the user, or data can be 

read in by MATLAB, rather than using FORTRAN control card format specified by 

Brockett.  This functionality greatly enhances the interface capability of the program 

by the user, and allows more rapid analysis and comparison of results.  The code is 

presented in Appendix B:  MATLAB Code of Brockett’s Work, and a description of 

the main variables used in the program are included in Appendix C:  Brockett.m 

Variable Descriptions. 

3.2 User Input to MATLAB Version of Brockett Code 
FORTRAN used formatted control cards, which allowed the user to input data to be 

processed by the program.  This method of data has been superceded by either 

direct input by the user or digital data saved as files on the computer.  The MATLAB 

code developed maintains as much original structure as possible, while allowing the 

operator to specify which data will be used as input, which is accomplished by the 

use of MATLAB script files.  These files allow the user to specify the data to be 

processed for each of the formats required by Brockett’s code.  In reference [1], 

Brockett provides sample input and output of the original code.  The first script file in 

Appendix D:  Sample Input Scripts for Brockett.m., REQD_IN.m, duplicates the 
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sample input presented by Brockett, and was used as a validation case for the 

MATLAB code.  Results matched the values presented in Brockett’s sample output 

on pages 70 – 72A of reference [1].  This format of this script file is required when 

inputting data at the points at the required offset locations as required by 

BROCKETT.m. 

Also included in Appendix D:  , are ARB_IN.m, KT_IN.m, and Brock_IN.m.  The 

ARB_IN.m is a sample file for the format required to input foil ordinates at arbitrary 

locations.  ARB_IN.m is written to accept input similar to that presented by Brockett 

in Figure 4b of reference [1].  The format is for input of foil ordinates at arbitrary 

stations.  The format allows multiple angles of attack to be input, resulting in the 

calculation of pressure distribution at each angle of attack.  This format accepts 

input, as specified by Brockett, that specifies airfoil ordinates in X, Y format.  Data 

points are required to be entered with the same number of points on the upper and 

lower surface, starting with the trailing edge along the upper surface to the nose 

location, continuing along the lower surface to the trailing edge.  KT_in.m is a script 

file used to import the data generated by the conformal transformation of Appendix 

A:  , used to compute the pressure distribution predicted by Brockett.  Brock_IN.m 

is used to input the geometry for the NACA 66, a = 0.8 (TMB Modified) foil used by 

Brockett in reference [4] 

Brockett’s FORTRAN program required very specific format for inputting data.  

Since the original code was maintained similar to the original structure, several 

operational variables must be specified for the code to function properly.  In 

addition, input data must be carefully structured in the proper format to be 

processed correctly.  The script files of Appendix D:   were used to accomplish the 

variable definitions required by Brockett.m. 

3.3 Output from Brockett.m 
To validate that the MATLAB version of Brockett’s code was accurate, a test run 

was conducted that replicated the sample case included in reference [1].  The 

REQD_IN.m script file was used, and the output of Brockett.m, contained in 
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Appendix E:  , was verified using reference [1].  A summary of the output at sample 

chord position for the MATLAB version of Brockett’s program, and the original data 

published by Brockett is shown in Table 1.  As seen in Table 1, the data agrees 

within approximately 7 significant figures, which is the number of significant figures 

expected for the single-precision data type used by FORTRAN.   The default for 

MATLAB is to use double-precision floating-point numbers, which would explain the 

slight differences between MATLAB calculations, and Brockett’s published data. 

 

Table 1:  Comparison of Brockett’s published data to MATLAB Version of Calculations 

Output from the original and the MATLAB version of Brockett’s work include multiple 

tables consisting of Profile Constants and Pressure Distribution information.  In 

addition to the screen output of the data, the MATLAB version saves the data as 

text files labeled Pressure.txt and Profile.txt, which are saved in the “Data” 

folder.  This data is later read into variables by MATLAB, or may be opened by the 

user. 
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3.4 Brockett Analysis Results 
To compare the pressure distribution calculated by the Brockett method to the exact 

solution shown in Figure 3, KT_IN.m was written to read in the ordinates of the 

normalized Karman-Trefftz foil generated in Figure 2.  The X-Y ordinates are 

cosine-spaced, and the number of points is specified by the ‘out_pts’ variable in 

ConfrmlTrans.m.  If out_pts is set to 37, this matches the required input 

location format of Brockett, but is not required.  Otherwise, BROCKETT.m will accept 

format as arbitrary location input.  Results obtained from the use of a Karman-

Trefftz foil shape is shown in Figure 4. 

Figure 4 through Figure 7 shows that Brockett’s method predicts the general shape 

of the pressure distribution and gives an estimate of the minimum pressure for the 

foil, but does not accurately predict the magnitude.  In Figure 4, the actual minimum 

pressure coefficient, –Cpmin, is 1.192 at X/C = 0.32.  Brockett’s analysis predicts that 

–Cpmin = 1.079 at X/C = 0.33, which falls short by 9.5%.  This error increases as 

angle of attack increases.  Inviscid minimum pressure coefficients predicted by 

Brockett are compared to analytic results for the Karman-Trefftz foil for various 

angles of attack in Table 2. 
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Figure 4: Comparison of Brockett Method to Exact Solution, α = 0° 
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Figure 5: Comparison of Brockett Method to Exact Solution, α = 5° 
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Figure 6: Comparison of Brockett Method to Exact Solution, α = 10° 
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Figure 7:  Comparison of Brockett Method to Exact Solution, α = -5° 
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Table 2:  Comparison of Brockett’s Method of Calculation of Minimum  

Pressure Coefficient to Exact Solution for a Karman-Trefftz Foil 
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4 Introduction to XFOIL 
4.1 XFOIL Functionality 
XFOIL 1.0 was written by Mark Drela in 1986.  The main goal was to combine the 

speed and accuracy of high-order panel methods with the new fully-coupled 

viscous/inviscid interaction method used in the ISES code developed by Drela and 

Giles. A fully interactive interface was employed to make it much easier to use than 

the traditional batch-type CFD codes.  Several inverse modes and a geometry 

manipulator were also incorporated early in XFOIL's development, making it a fairly 

general airfoil development system [6]. 

XFOIL is an analysis and design system for Low Reynolds Number Airfoils.  XFOIL 

uses an inviscid linear-vorticity panel method with a Karman-Tsien compressibility 

correction for direct and mixed-inverse modes.  Source distributions are 

superimposed on the airfoil and wake permitting modeling of viscous layer influence 

on the potential flow.  Both laminar and turbulent layers are treated with an e9-type 

amplification formulation determining the transition point.  The boundary layer and 

transition equations are solved simultaneously with the inviscid flow field by a global 

Newton method [7].   

4.2 XFOIL Formulation Summary 
Details of XFOIL’s formulation are presented in reference [7], and will only be 

summarized here.  XFOIL uses a general inviscid airfoil flow field, constructed by 

the superposition of a free stream flow, a vortex sheet of strength γ on the airfoil 

surface, and source sheet strength, σ, on the airfoil surface and wake.  The airfoils 

contour and wake trajectory is discretized into flat panels, with panel nodes on the 

airfoil and wake.  Each airfoil panel has a linear vorticity distribution defined by the 

node value.  Each airfoil and wake panel has a constant source strength, which is 

later related to viscous layer quantities.  Requiring the streamfunction to be equal to 

a constant value at each of the nodes on the airfoil surface results in a system of 

linear equations that could be solved in combination with the Kutta condition.  
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XFOIL’s viscous formulation was not used extensively in this research, and will not 

be discussed in detail. 

4.3 Adaptation of XFOIL 
XFOIL has been in use for many years, and has become a highly regarded analysis 

tool.  This project adapts the improved functionally of XFOIL for use in propeller 

design by using the algorithms contained within XFOIL to conduct the analysis of a 

given foil. In particular, XFOIL is used to develop minimum pressure envelopes, or 

cavitation buckets, as presented by Brockett [4].     

XFOIL in its current release (XFOIL 6.94) is a menu driven program, which requires 

interactive user input and manipulation.  In addition, XFOIL generates various 

output plots to allow graphical display and interface by the user.  In order to adapt 

XFOIL’s functionality, XFOIL was converted into a “black-box” calculation tool.  

XFOIL’s menu driven functionality was removed by altering the source code such 

that all desired operational instructions would be input as command line arguments, 

rather than menu driven items and direct user input.  All of XFOIL’s plot and screen 

output utilities were also disabled.  By disabling the plot functionality, calculation 

speed was improved.  Also, removal of XFOIL’s plot functionality, allowed simpler 

compilation of the source code, since no graphical interface was required for the 

operating system.  Finally, XFOIL was altered such that any desired output was 

written to and saved as a data file, which could be read by MATLAB or opened 

directly by a text editing program. 

4.3.1 Executing XFOIL 

XFOIL was altered such that it reads in command line arguments that provide 

instructions, rather than direct input from the operator via menu options.  This allows 

rapid execution by an external program, such as MATLAB.  From the DOS prompt, 

or by executing a system command, XFOIL can be instructed how to process input 

data, and which results to save.  A simple example of how the modified XFOIL 

program may be executed as follows.  At the DOS command prompt, in a directory 

containing the xfoil.exe program, the user may type: 
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 “xfoil NACA 4415 OPER ALFA 5 OPER CPWR output” 

The above command instructs XFOIL to use internal definition for a NACA 4415 foil, 

at an angle of attack of 5°, and write the pressure coefficient (Cp) distribution to a 

file named “output”.  When executed, the command line above results in a DOS 

output of the following: 

 START of XFOIL 

 START of Menu Loop. Command is: NACA 

 Using NACA  4415 

  Max thickness =     0.150043  at x =   0.301 

  Max camber    =     0.039999  at x =   0.398 

 START of Menu Loop. Command is: OPER 

 OPER loop command:  A 

 Angle of Attack:      5.000 

  Calculating unit vorticity distributions ... 

  OPER loop complete. 

 START of Menu Loop. Command is: OPER 

 OPER loop command:  CPWR 

  OPER loop complete. 

 

The DOS output above represents informational items intentionally left in the XFOIL 

program to allow the user to verify that commands were executed properly.  The 

result of the XFOIL calculations are written to a user specified file.  Sample format is 

as follows.  The first column is the X-location, starting at the trailing edge, continues 

along the upper surface around the nose back to the trailing edge.  The second 

column is the calculated pressure coefficients at the corresponding locations. 

     #    x        Cp   
     1.00000  0.48832 
     0.99329  0.28542 
     0.98206  0.19383 
     0.96938  0.11911 
        …        …    
    0.95217  0.26832 
     0.96743  0.28589 
     0.98105  0.31188 
     0.99296  0.35546 

    1.00000  0.48832 
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Details of the structure and format of commands are included in Appendix F:  

Modified XFOIL User Guide.  In addition, Appendix G:  Instruction for compiling 

modified XFOIL Code, contains additional instructions for obtaining and compiling 

the source code for the modified version of XFOIL. 

4.4 Comparison of XFOIL Calculated Pressure Distributions 
In section 3.5, the exact solution to the Karman-Trefftz foil pressure distribution was 

compared to the method presented by Brockett.  Figure 8 to Figure 11 compare the 

XFOIL calculated pressure distribution, the Karman-Trefftz solution and the Brockett 

solution.  In each instance, it can be seen that the XFOIL solution is nearly identical 

to the analytic solution.  The XFOIL calculations for Figure 8 through Figure 11 were 

performed by instructing XFOIL to repanel the foil using 50 panels.  Although higher 

panel resolution could be specified (160 is default), 50 was specified to prevent an 

excessive number of data points. 
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Figure 8:  Comparison of XFOIL and Brockett Method to Exact Solution, α =10° 
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Figure 9:  Comparison of XFOIL and Brockett Method to Exact Solution, α =5° 
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Figure 10:  Comparison of XFOIL and Brockett Method to Exact Solution, α =0° 
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Figure 11:  Comparison of XFOIL and Brockett Method to Exact Solution, α =-5° 
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5 Minimum Pressure Envelope Analysis 
5.1 Background 
In reference [4], Brockett published minimum pressure envelops for modified NACA-

66 sections with NACA A=0.8 camber and BUSHIPS Type I and Type II sections 

using the calculation method described in section 3.  These minimum pressure 

envelopes were computed for steady two-dimensional flow, with an empirical 

correction for viscosity.  In addition, design charts for selecting “optimum” foils were 

included. 

The work presented here includes a similar analysis method, with calculations 

performed by XFOIL, allowing the generation of minimum pressure envelopes for an 

arbitrary foil shape.  This was accomplished using MATLAB integrated with the 

modified version of XFOIL described in section 4.3.  Based on the improved 

accuracy of XFOIL over the method proposed by Brockett as shown in section 4.4, 

it is ascertained that this method provides a more accurate calculation of the 

pressure distribution, and location and magnitude of the minimum pressure for the 

inviscid solution  

5.2 Description of Minimum Pressure Envelope Generation 
Appendix H:  MATLAB Files for Calculation of Minimum Pressure Envelopes 

contains the MATLAB files that were used to generate the minimum pressure 

envelopes using the modified XFOIL executable.  This script performs various 

functions described in the following sections. 

5.2.1 Foil Shape Generation 

Foils may be defined in either of two methods.  XFOIL contains built in functions 

defining NACA 4 and 5-digit series foils.  If the user desires to use these NACA 

foils, then the foil_type variable should be set to “NACA”.  If NACA series foil 

shape is desired, the user must also set the variable foil_name to either “FOUR” 

or “FIVE”, depending on which NACA series is desired, and the chordwise position 

of maximum camber must be specified by the fo_loc variable. 
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If profile data will be read in from a data file, then the foil_type variable should 

be set to “LOAD”.  Foil shape is defined by meanline and thickness information.  

The data files containing the meanline and thickness information are specified by 

the user using the mean_type and thick_type variables, which are set to the 

name of the files containing the meanline and thickness offset values.  The data 

files need to be located in the corresponding “Meanline” and “Thickness” folders.  

Sample format for these files is contained and described in Appendix I:  Meanline 

and Camber Data File Format. 

The makefoil.m function inputs the meanline and camber data from the files 

specified, and combines the meanline and thickness distributions in the standard 

method as described by Abbott and Von Doenhoff [8].  In addition, the camber and 

thickness distributions are scaled if required.  The makefoil.m function utilizes 

MATLAB’s spline function to interpolate the required points to define the foil surface.  

XFOIL requires that foil geometry is specified by defining the X-Y locations along 

the foil surface from trailing edge, along the upper surface, around the leading edge, 

and back to the trailing edge along the lower surface.  This is accomplished within 

the makefoil.m function. 

The user may specify the number of desired output points to export to XFOIL by 

specifying the N_parab_eval and N_surf_pts in the makefoil.m script.  Care 

should be used to specify a reasonable number of points, especially along the 

leading edge.  Too many points may cause errors in XFOIL due to excessively 

small spacing.  However, a sufficient number of points to adequately define the foils 

should be used, provided they are adequately spaced, with more points in regions 

of higher curvature.  N_parab_def specifies the number of points used for creating 

the spline that defines the nose radius.  If less than approximately 20 points are 

specified, the spline utility fails to produce a smooth output curve.  Input and output 

may be plotted to verify proper definition of surface locations by setting the 

make_plot variable to ‘yes’, otherwise it should be set to ‘no’ to prevent excess 

plot generation. 
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5.2.2 User Specifications and Output from XBucket.m 

The output from the MATLAB script, XBucket.m, may be specified by the user.  

The purpose of the script is to produce minimum pressure envelopes for the foil 

geometry specified by the user.  Output plots are a similar format to that of Brockett 

[4].  Sample output plots show in Figure 12 and Figure 13 below. 
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Figure 12: Minimum Pressure Envelopes for NACA 66 Section 
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Figure 13:  Minimum Pressure Envelopes for NACA 66 Section (TMB Modified)  

with the NACA a=0.8 Camberline, Having a Maximum Camber Ratio of 0.04 at Various Thicknesses. 

 
XBucket.m generates output as in Figure 12 and Figure 13 based on user 

specified ranges.  The upper and lower bounds of the angle of attack for which 

calculations and plotting are performed is specified by Alpha_lim. 

Alpha_delta specifies the resolution, or increment in angle of attack, for which 

each minimum pressure coefficient is determined.  Larger values of Alpha_delta 

save calculation time, but produce less accurate plots. 

Each plot produced is for a specified camber ratio. The desired range and camber 

ratio increment are specified by the foc_rng and foc_step variable.  A 

separate plot will be produced for each camber ratio from the lower foc_rng value 

to the upper foc_rng value, in increments of foc_step.   

Similarly, on each plot are minimum pressure envelopes for each thickness ratio.  

The range of values for thickness is specified by toc_rng, in increments of 

toc_step.  A separate curve is plotted for each thickness value. 

   to/C 
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Also, although not a specific concentration of this project, the user may specify that 

XFOIL’s viscous calculation mode be used.  In order to conduct viscous 

calculations, the user must set visc_tog to 1, and specify the desired Reynolds 

number for calculation.  This function has been incorporated for further research.  

Initial results are not reliable, as XFOIL does not converge consistently. The effect 

of convergence failure is shown for a typical case in Figure 14.  The jagged curve is 

a result of XFOIL’s viscous caluculations failuring to converge when calculating the 

minimum pressure coefficient for a given angle of attack.   
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Figure 14: Sample Viscous and Inviscid Minimum Pressure Envelopes  

Calculated by XFOIL (Reynolds Number = 1*106, 100 Maximum Iterations) 

It is believed that small panel size (or excessive number of panels), angle of attack, 

Reynolds Number, maximum number of iterations and viscous solution acceleration 

parameter (VACC) are all factors that affect XFOIL convergence.  Various 

combinations were tried to improve comvergence.  Better results were obtained 

when adding the command to repanel the foil with 70 panesl, vice the previous 

value of 140.  Results are shown in Figure 15.  Additional research should be 
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conducted to evaluate the viscous calculation cabability of XFOIL, and determine 

how to most effectively set parameters that result in smooth, consistent, convergent 

results. 

0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-CPmin

A
n
g
l
e
 
o
f
 
A
t
t
a
c
k
 
(

!
)

VISCOUS Brockett Diagram

Meanline: Brock08act.txt.  Thickness: Brock66act.txt

 Fo/c = 0.04, To/C = 0.1

 

 

VISCOUS

INVISCID

 
Figure 15:  Sample Viscous and Inviscid Minimum Pressure Envelopes  

Calculated by XFOIL (Reynolds Number = 1*106, 100 Maximum Iterations, 70 Panels) 

 

5.3 Comparison of Brockett’s Method to XFOIL Results 
This intent of this research was to create a MATLAB based utility that would 

reproduce the minimum pressure diagrams published by Brockett [4], which could 

be later integrated into OpenProp for propeller design.  Initial attempts using a 

simple two-dimensional panel method did not closely match Brockett’s published 

results.  As a result, XFOIL was implemented in order to conduct the pressure 

distribution calculations.  XFOIL was chosen due to its highly regarded reputation as 

an accurate tool for conducting foil analysis and design.  Results using XFOIL were 

still not able to reproduce the data as expected.  Finally, the program as published 

by Brockett in reference [1] was reprogrammed in MATLAB in order to conduct 
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further comparison.  It was this comparison that revealed the noticeable differences 

between Brockett’s results and exact theory for potential flow, as previously shown 

in Figure 4 through Figure 7. 

Figure 16 below illustrates the differences between Brockett’s published minimum 

pressure envelopes, and the XFOIL calculated results.   Figure 16 presents 

minimum pressure envelopes for the NACA 66 (TMB Modified), a = 0.8 meanline.  

Each individual curve was developed for a camber ratio of 0.06, and a thickness 

ratio of 0.12. 
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Figure 16:  Minimum Pressure Envelope Comparison 

Figure 16 illustrates the difference between Brockett (Inviscid) and the XFOIL 

(Inviscid) solutions.  The difference is a result of inaccuracies of the Brockett 

method to predict the minimum pressure coefficient, as previously discussed in 

section 4.4, and summarized in Table 2. Specifically, the Brockett method 

underestimates the magnitude of the minimum pressure coefficient for intermediate 

and positive angles of attack, which corresponds to the near vertical and upper 
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portions of the minimum pressure envelope, and overestimates the magnitude of 

minimum pressure at negative angles of attack.  The near vertical portion of the 

graph represents the region of operation when the minimum pressure occurs in the 

vicinity of the mid-chord.  The upper and lower portions of the envelope correspond 

to nose cavitation, when the minimum pressure occurs near the leading edge of the 

foil due to elevated angles of attack. 

The trend shown in Figure 16 is typical for all thicknesses and camber ratios.  As a 

result, the overall minimum pressure envelopes as shown in Figure 12 and Figure 

13 do not exactly match the published results of Brockett [4].  In addition, Brockett’s 

published minimum pressure envelops for modified NACA-66 sections with NACA 

a=0.8 camber include an empirical correction for viscosity.  The difference between 

Brockett’s potential theory calculation and empirical correction for viscosity is also 

shown in Figure 16.  The magnitude of the difference between Brockett’s viscous 

and inviscid calculations is approximately equal to the magnitude difference 

between Brockett’s inviscid calculation and XFOIL.  As a result, it is believed that 

further investigation should be conducted to account for the viscous effects, and 

how viscous effect could be accounted for using XFOIL.  As previously noted, 

XFOIL is capable of performing viscous calculations, and that ability was retained in 

the modified version XFOIL used for this work.  However, accurate results were not 

reliably obtained, and were not evaluated.  Further research in this area is 

recommended, which would greatly enhance the capabilities generated as for this 

project. 
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6 OpenProp Implementation Approach 
Open-source Propeller Design and Analysis Program (OpenProp) is an open source 

MATLAB®-based suite of propeller numerical design tools.  This program is an 

enhanced version of the MIT Propeller Vortex Lattice Lifting Line Program (PVL) 

developed by Professor Justin Kerwin at MIT in 2001.  OpenProp v1.0, originally 

titled MPVL, was written in 2007 by Hsin-Lung Chung and is described in detail in 

[9].  Two of its main improvements versus PVL are its intuitive graphical user 

interfaces (GUIs) and greatly improved data visualization which includes graphic 

output and three-dimensional renderings. 

OpenProp was designed to perform two primary tasks: parametric analysis and 

single propeller design.  Both tasks begin with a desired operating condition defined 

primarily by the required thrust, ship speed, and inflow profile.  The parametric 

analysis produces efficiency diagrams for all possible combinations of number of 

blades, propeller speed, and propeller diameter for ranges and increments entered 

by the user.  Efficiency diagrams are then used to determine the optimum propeller 

parameters for the desired operating conditions given any constraints (e.g. propeller 

speed or diameter) specified by the user. 

OpenProp was developed to serve as an open source code for propeller design.  

While it is currently a tool used in the initial design phase, it is a base program that 

can be continually expanded to perform detailed design and analysis of 

sophisticated marine propulsors and turbines.  Development of a method of 

cavitation analysis that could be integrated into OpenProp was a primary motivation 

for this thesis. 

The use of MATLAB provides for integration into the propeller design suite, 

OpenProp.  Integration of cavitation analysis into OpenProp would provide the 

designer information about cavitation conditions while early in the design process, 

allowing adjustments to blade geometry to correct deficiencies.  Following the 

design recommendations of Brockett [4], design charts or internal data feedback 

could provide adjustments to blade geometry.  Cavitation prediction could either be 
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conducted for existing foils or foil geometry could be selected in order to avoid 

cavitation conditions for a given set of operating conditions. 

6.1 Analysis of Existing Foils 
For existing propeller, where blade geometry is known, the code presented here 

could be used to conduct cavitation analysis for the foil.  The geometry for the foil 

can be formatted as required, and may be used as input.  To predict cavitation on 

existing foils, the minimum pressure curve for the propeller geometry at the radial 

position under investigation should first be generated.  Then, based on the given 

operating conditions (angle of attack and local cavitation number, σ = [p∞ - 

pvapor]/[½ρU2]), the operating point may be compared to the calculated minimum 

pressure envelope.  By setting the cavitation number equal to the negative of the 

minimum pressure coefficient, the operating point may be determined.  If the 

operating point falls within the region bound by the minimum pressure envelope, 

cavitation is assumed not to occur.  Cavitation is assumed to occur in the region 

outside of the minimum pressure envelope.  

To analyze a complete propeller blade, it is recommended that a routine be created 

that analyzes the propeller blade at various radial positions from the hub to the tip at 

user specified intervals.   At each radial position, the geometry must be determined 

as input.  In addition to the minimum pressure coefficient, the pressure distribution 

along the chord may be calculated and compared to the cavitation number.  By 

determining where the negative of the pressure coefficient is greater than the 

cavitation number, regions along the propeller where cavitation is predicted could 

be predicted.  These regions could then be used to produce a color coded plot of 

the surface of the propeller blade, indicating regions were cavitation is predicted to 

occur. 

Margin to cavitation could also be determined.  For propellers that are predicted not 

to cavitate, the operating angle of attack can be compared to the angles of attack at 

the upper and lower bounds of the minimum pressure envelope for the cavitation 

number.  The difference between the operating angle of attack and the angles of 
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attack at the envelope boundaries gives an indication of how close the propeller is 

to cavitation based on expected operating conditions.  This information can also be 

used to predict how far from design conditions the propeller may be operated before 

the onset of cavitation.  Varying inflow would be an example of off design conditions 

that could be analyzed using the margin to cavitations.  If the inflow is known to vary 

by 2° around the circumference, then as long as the margin to cavitation is greater 

than 2°, cavitation would not be expected to occur due to varying inflow. 

6.2 Geometric Design to Prevent Cavitation 
Rather than analyzing an existing propeller, minimum pressure envelopes could be 

used as an aid to the designer in producing a propeller blade geometry that is 

optimized to prevent cavitation.  ‘Optimum’ foil geometry, as described by Brockett, 

allows the greatest total angle change without occurrence of cavitation for a given 

cavitation number.  For symmetric foils (Figure 12), the optimum foil is the one for 

which the minimum pressure envelope is the widest at the given –Cpmin.  In other 

words, it is the thickness which provides the greatest envelope width for the given 

operating conditions. 

For cambered foils, there are two separate curves that bound the minimum 

pressure envelopes, one for the upper portion, and one for the lower.  These 

bounding curves are shown below in Figure 17.  The solid line shows the bounds for 

the upper portion and the dashed line shows the bound for the lower.  These charts 

can be use to aid in selection of the appropriate thickness and camber based on 

operating conditions.   
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Figure 17:  Minimum Pressure Envelopes for Design 

 

Based on design specifications (lift coefficient and cavitation number), the designer 

has the option of two methods for determining an angle of attack for which to place 

the foil.  The angle of attack may be specified as the ideal angle of attack, or the 

angle that maximizes the margin to cavitation, located halfway between the 

minimum pressure envelope curve for the given thickness at the specified cavitation 

number.   

From thin airfoil theory, the idea angle of attack, αi, is defined as the angle of attack 

for which the coefficient Ao = 0.  Ao is the angle of attack dependent coefficient in 

the Fourier series expansion of df/dx (camberline slope) [5].  Equations  (6.1) and 

(6.2) below provide details. 
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The ideal angle of attack is tabulated for many types of foils, or may be calculated 

using the relations above.  Once determined, the ideal lift coefficient, which 

corresponds to the lift coefficient at the ideal angle of attack, should be evaluated, 

and may be obtained from XFOIL.  Once the ideal lift coefficient is determined, the 

camber ratio may be determined by scaling the tabulated camber value by the same 

ratio as the desired to ideal lift coefficients. 
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Using the minimum pressure envelopes for the calculated camber, the thickness 

ratio can be determined based on the upper bounding curve of Figure 17 by 

entering the graph at the operating cavitation number.  Numerically, this could be 

accomplished by one of two methods.  If the location of the “knuckles” of the 

envelopes can be identified, the bounding curve for the minimum pressure 

envelopes can be determined, similar to the bounds in Figure 17.  Defining the 

bounding surface as a function of thickness ratio would allow the designer to directly 

calculate the thickness that results in the widest envelope for the given cavitation 

number.  This method was attempted, but determining the location of the “knuckles” 

was difficult and a reliable method was not found.  Rather than determining a 

function that describes the bounds of the minimum pressure envelopes, it is 

recommended that the margin to cavitation be calculated incrementally for each of 

the thicknesses, until a maximum is found for the specified cavitation number.  

Finally, the width of the envelope can be determined by finding the intersection of 

the cavitation number with the lower portion of the minimum pressure envelope for 

the given thickness.  The envelope width can then be compared to any radial inflow 

variation to evaluate propeller performance with varying inflow.   
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Rather than assuming the foil be operated at the ideal angle of attack, a method 

that maximizes cavitation margin could be used.  For this purpose, cavitation margin 

is defined as the magnitude of the difference between the operating angle of attack, 

and the angle at which cavitation is predicted.  In order to maximize the cavitation 

margin, the operating angle of attack should be exactly in the middle of the upper 

and lower legs of the minimum pressure envelope.   

An approach to determining angle of attack, camber and thickness, would be to 

start by specify foil type, cavitation number, and required lift coefficient.  Using the 

foil type, minimum pressure envelopes for varying camber and thickness should be 

produced.  Start with the envelopes of minimum camber and the negative of the 

minimum pressure coefficient equal to the cavitation number.  The thickness 

producing the maximum envelope width would then be determined.  The, the values 

for the angles of attack corresponding to the maximum with at the specified –Cp 

should be determined.  The operating airfoil angle of attack should be the midpoint 

between these values.   

Once an initial camber, thickness, and angle of attack have been specified, the 

resultant lift coefficient should be calculated and compared to desired lift coefficient 

as specified in the design.  If the calculated lift coefficient is less than required, the 

camber ratio should be increased incrementally and the thickness, angle of attack, 

and lift coefficient recalculated until desired lift coefficient is achieved. 
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7 Conclusion 
A method of generating minimum pressure envelopes using XFOIL was created.  

By modifying the source code, a version of XFOIL that does not require user 

interaction was created.  Using MATLAB to interface with XFOIL, minimum pressure 

envelopes for an arbitrary foil shape can be generated, provided offset data is 

available for foil geometry. 

The minimum pressure envelopes created as a result of the XFOIL calculations 

were compared to published work by Brockett.  It was found that the two-

dimensional panel method of XFOIL could more accurately estimate the potential 

flow solution for a Karman-Trefftz foil than the approximate conformal 

transformation method used by Brockett.  Although XFOIL includes the ability to 

conduct calculations for a viscous fluid, additional work is required in order to 

evaluate the limits for which XFOIL’s viscous mode will reliably converge. 

The code developed as part of this thesis is intended to be used for further 

integration into OpenProp.  Integration into OpenProp will allow the user to both 

conduct cavitation analysis and prediction for existing foils, as well as allow the 

designer to consider cavitation in the design process, and select foil geometry that 

will prevent cavitation. 

7.1 Recommendations for Future Work 
7.1.1 Viscous Calculations 

In order to utilize the benefits of the highly accurate potential flow solution available 

from XFOIL, the effects of viscosity must be reevaluated, and accounted for.  The 

empirical modification used by Brockett depends upon specifying an experimental 

lift coefficient for each angle of incidence, and can be determined from a lift-curve 

slope and angle of zero lift using the following equation: 

 ( )02
e

L
C !" # #= $  (7.1) 
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Where η is the lift-curve slope coefficient and α0e is the experimental angle of zero 

lift.  It has been experimentally shown [8] that η and α0e are independent for high 

Reynolds numbers (>6x106).  This method should be reevaluated and compared to 

the manner by which viscous calculations are conducted in XFOIL. XFOIL’s viscous 

mode should be integrated into the methods presented here for calculating 

minimum pressure envelopes, if found to be accurate.  In addition, the parameters 

affecting convergence of XFOIL’s viscous calculation should be evaluated to ensure 

proper problem formulation and evaluation. 

7.1.2 OpenProp Integration 

The design approaches outlined in section 6 should be developed and integrated 

into OpenProp.  Once developed, these methods would provide great benefit and 

enhance the utility of the OpenProp design suite.  Program code that performs the 

basic functions required to integrate cavitation design were developed in this thesis.  

In particular, the development of the modified version of XFOIL allows rapid 

calculation of complex foil geometries, and simplifies the method of retrieving data 

from XFOIL and entering that data into MATLAB.  In addition, the functions 

generated in project provide a great starting point from which to develop the 

functionality and usefulness of OpenProp. 
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Appendix A:   Matlab Script for Conformal Transformation of 
Karman-Trefftz Foil. 

%   Code Developed by Chris Peterson to calculate and display Conformal  
%   Transformation of a Karman-Trefftz foil. Intended to be used to  
%   compare values for different methods of calculating surface velocites 
%   for airfoils. 
clc; clear all;close all; 
%User defined Data 
U           = 1;            %Free Stream Velocity 
alpha_deg   = 0;            %Angle of Attack (Degrees) 
xc          = -0.10;        %Circle Center Location (<0) 
yc          = 0.150;        %Circle Center (>0 adds + camber) 
tau         = 10;           %Tail Angle 
n_pts       = 201;          %Number of points along mapped foil surface 
out_pts     = 36;           %Total number of X-Y output points (ODD) 
a           =  1;           %X-intercept 
alpha       = deg2rad(alpha_deg);  
%Display parameters 
No_strm     = 21;           %Number of Streamlines to plot 
range       = 3;            %Z-plane X-Y Range 
strm_strt   = -3;           %X-Location for streamline start 
div         = 0.1;          %Grid spacing for velocity vectors on Z-plane 
%Calculation of properties 
beta        = atan(-yc/(1-xc));             %Angle to rear stagnation point 
beta_deg    = rad2deg(beta);                %Beta in degrees 
rc          = sqrt((a-xc)^2 + yc^2);        %Calculate radius of circle 
Gamma_calc = 4*pi*rc*U*sin(beta-alpha);     %Kutta condition requirement 
Gamma = Gamma_calc;                         %Set circulation to required 
lam = 2-tau/180;                          %Trailing egde to lamba calculation 
%Generate Z-plane Plot with streamlines and velocity vectors 
[X,Y]   = meshgrid(-range:div:range,-range:div:range);  %Create location mesh 
r       = sqrt((X-xc).^2 + (Y-yc).^2);              %Radius at mesh locations 
%Calculate angle theta to mesh locations, 0 <= theta < 2*pi 
for j=1:length(X) 
    for k=1:length(X) 
        if X(j,k) >= xc 
            theta(j,k) = atan((Y(j,k)-yc)/(X(j,k)-xc)); 
        elseif X(j,k) < xc 
            theta(j,k) = atan((Y(j,k)-yc)/(X(j,k)-xc)) + pi; 
        end 
    end 
end 
%Calculate velocity components u, v based on potential theory 
u = U*cos(alpha) - (U.*((rc./r).^2).*cos(2.*theta - alpha))... 
    - Gamma.*sin(theta)./(2.*pi.*r); 
v = U*sin(alpha) - (U.*((rc./r).^2).*sin(2.*theta - alpha))... 
    + Gamma.*cos(theta)./(2.*pi.*r); 
%Calculate location of stagnation points 
theta_s1    = asin(Gamma/(4*pi*rc*U)) + alpha; 
theta_s2    = asin(-Gamma/(4*pi*rc*U)) + alpha - pi; 
x_st1       = rc*cos(theta_s1)+xc; 
y_st1       = rc*sin(theta_s1)+yc; 
x_st2       = rc*cos(theta_s2)+xc; 
y_st2       = rc*sin(theta_s2)+yc; 
%Define point on circle 
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x_circ = xc + rc*cos(0:pi/21:2*pi); 
y_circ = yc + rc*sin(0:pi/21:2*pi); 
z_circ = x_circ + i*y_circ;       %z is complex coordinates of circle 
%Eliminates points inside circle for vector plot (large values near 
singularities) 
u_mod = u;       
v_mod = v; 
for j = 1:length(X) 
    for k = 1:length(X) 
        if (X(j,k)-xc)^2 + (Y(j,k)-yc)^2 < rc^2 
            u_mod(j,k) = 0; 
            v_mod(j,k) = 0; 
        end 
    end 
end 
%   Plot Z-plane, with circle, stagnation points, velocity vectors and 
%   streamlines. 
figure() 
orient landscape; 
axis equal;hold on;grid on;ylim([-range range]);xlim([-range range]); 
title({'Z-plane';'Potential Flow Around a Circle'}); 
set(gca,'YTick',-range:range);set(gca,'XTick',-range:range); 
streamline(stream2(X,Y,u,v,strm_strt*ones(No_strm,1)... 
    ,-range:2*range/(No_strm-1):range));    %Plots streamlines  
plot(x_circ, y_circ, 'k')                   %Plots circle 
plot(x_circ, y_circ, 'k.')                  %Plots circle points 
plot(xc, yc, 'r+')                          %Plots circle center 
plot(x_st1, y_st1, 'ko')                    %Plots stagnation point 1 
plot(x_st2, y_st2, 'ko')                    %Plots Stagnation point 2 
% quiver(X,Y,u_mod,v_mod, 'g');               %Plots Vectors 
%Map surface of ccircle to Zeta-plane 
Zeta_circ = lam*a*((z_circ+a).^lam + (z_circ-a).^lam)...  
    ./((z_circ+a).^lam - (z_circ-a).^lam); 
%Routine to find velocities and -Cp on foil surface 
theta   = 0:2*pi/n_pts:2*pi-pi/n_pts;   %Defines theta incremented 0->2*pi 
x_z     = xc + rc*cos(theta);       %X location in Z-plane 
y_z     = yc + rc*sin(theta);       %Y location in Z-plane 
u_z     = U*cos(alpha)...           %X velocity in Z-plane 
            - (U.*cos(2.*theta - alpha)) - Gamma.*sin(theta)./(2.*pi.*rc); 
v_z     = U*sin(alpha)...           %Y velocity in Z-plane 
            - (U.*sin(2.*theta - alpha)) + Gamma.*cos(theta)./(2.*pi.*rc); 
z_z     = x_z + i.*y_z;             %Complex velocoity in Z-plane 
%Transform Surface Locations & Velocities to Zeta Plane 
Zeta    = lam*a.*...                %Complex coords Zeta = f(z) 
            ((z_z+a).^lam + (z_z-a).^lam)./((z_z+a).^lam - (z_z-a).^lam); 
x_zeta  = real(Zeta);               %X location in Zeta-plane 
y_zeta  = imag(Zeta);               %Y location in Zeta-plane 
dzeta_dz = (4*(lam*a)^2)...         %D(Zeta)/Dz 
            *( ( (z_z-a).^(lam-1)) .* ((z_z+a).^(lam-1)) )... 
            ./(( ((z_z+a).^lam) - ((z_z-a).^lam)).^2);  
vel_zeta = (u_z - i.*v_z)./dzeta_dz; %[u-iv]_zeta = [u-iv]_x/Dzeta/Dz 
u_zeta  = real(vel_zeta);           %X velocity in Zeta-plane 
v_zeta  = -imag(vel_zeta);          %Y velocity in Zeta-plane 
q_zeta  = sqrt(u_zeta.^2 + v_zeta.^2);%Zeta-Velocity Magnitude 
cp_zeta = 1-(q_zeta./U).^2;         %Zeta pressure coefficient 
  
%Create plot of Zeta plane 
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figure(); grid on;hold on;axis equal;orient landscape; 
xlim([-range range]);ylim([-range+1 range-1]); 
title({'\zeta-Plane';'Potential Flow Around Mapped Foil'}); 
plot(Zeta_circ, 'k') 
%plot(Zeta_circ, 'k.') 
%Find Z coodinates in Z-Plane based on required spacing in Zeta-plane 
%in order to calculate U-V components in mesh spacing for streamline plot 
[Xgrd_zeta,Ygrd_zeta] = ...             %Create location mesh 
    meshgrid(-range:div:range,-range:div:range);  
Zetagrd = Xgrd_zeta + i*Ygrd_zeta; 
Z_grd = -a.*((((Zetagrd-lam)./(Zetagrd+lam)).^(1/lam))+1)... 
    ./((((Zetagrd-lam)./(Zetagrd+lam)).^(1/lam))-1); 
X_grd = real(Z_grd); 
Y_grd = imag(Z_grd); 
r_grd       = sqrt((X_grd-xc).^2 + (Y_grd-yc).^2);%Radius at mesh locations 
%Calculate angle theta to mesh locations, 0 <= theta < 2*pi 
for j=1:length(X_grd) 
    for k=1:length(X_grd) 
        if X_grd(j,k) >= xc 
            theta_grd(j,k) = atan((Y_grd(j,k)-yc)/(X_grd(j,k)-xc)); 
        elseif X(j,k) < xc 
            theta_grd(j,k) = atan((Y_grd(j,k)-yc)/(X_grd(j,k)-xc)) + pi; 
        end 
    end 
end 
%Calculate velocity components u, v based on potential theory 
u_grd_z = U*cos(alpha) - (U.*((rc./r_grd).^2).*cos(2.*theta_grd - alpha))... 
    - Gamma.*sin(theta_grd)./(2.*pi.*r_grd); 
v_grd_z = U*sin(alpha) - (U.*((rc./r_grd).^2).*sin(2.*theta_grd - alpha))... 
    + Gamma.*cos(theta_grd)./(2.*pi.*r_grd); 
for j = 1:length(X_grd) 
    for k = 1:length(X_grd) 
        if (X_grd(j,k)-xc)^2 + (Y_grd(j,k)-yc)^2 < rc^2 
            u_grd_z(j,k) = 0; 
            v_grd_z(j,k) = 0; 
        end 
    end 
end 
dzeta_dz_grd = (4*(lam*a)^2)...             %D(Zeta)/Dz 
            *( ( (Z_grd-a).^(lam-1)) .* ((Z_grd+a).^(lam-1)) )... 
            ./(( ((Z_grd+a).^lam) - ((Z_grd-a).^lam)).^2);  
vel_grd_zeta = (u_grd_z - i.*v_grd_z)./dzeta_dz_grd; 
u_zeta_grd  = real(vel_grd_zeta);           %X velocity in Zeta-plane 
v_zeta_grd  = -imag(vel_grd_zeta);          %Y velocity in Zeta-plane 
%quiver(Xgrd_zeta ,Ygrd_zeta, u_zeta_grd, v_zeta_grd, 'g')%Plots Vectors 
streamline(stream2(Xgrd_zeta ,Ygrd_zeta, u_zeta_grd, v_zeta_grd,... 
    strm_strt*ones(No_strm,1),-range:2*range/(No_strm-1):range));%Plots 
streamlines  
%Create and save plot of minimum pressure distribution 
figure(); hold on; grid on; xlim([0 1]) 
xlabel('Chordwise Position (X/C)') 
ylabel('Negative of Pressure Coefficient (-C_p)') 
title(['Pressure Distribution for \alpha = ', num2str(alpha_deg),'\circ']) 
plot((x_zeta-min(x_zeta))./(max(x_zeta)-min(x_zeta)), -cp_zeta, 'k.-') 
saveas(gcf,'Trefftz.fig') 
close(); 
%Scales foil to Chord lenght of 1. 
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chord = (max(x_zeta)-min(x_zeta)); 
x_zeta_scl = (x_zeta-min(x_zeta))./(max(x_zeta)-min(x_zeta)); 
y_zeta_scl = y_zeta./(max(x_zeta)-min(x_zeta)); 
%Locates nose location and index X and Y. 
[x_nose, i_nose] = min(x_zeta_scl); 
[x_tail, i_tail] = max(x_zeta_scl); 
%Breaks scaled locations into upper and lower surfaces 
x_US = [x_zeta_scl(i_tail:end) x_zeta_scl(1:i_nose)]; 
y_US = [y_zeta_scl(i_tail:end) y_zeta_scl(1:i_nose)]; 
x_LS = x_zeta_scl(i_nose:i_tail); 
y_LS = y_zeta_scl(i_nose:i_tail);     
%Defines X locations, cos-spaced, to be used for output 
x_spl = (1+cos(0:2*pi/(out_pts-1):2*pi))/2; 
%Splines Upper and Lower surfaces and evaluates at x_spl locations 
spl_US = spline(x_US, y_US); 
spl_LS = spline(x_LS, y_LS); 
y_spl = [ppval(spl_US, x_spl(1:ceil(out_pts/2))) ... 
    ppval(spl_LS, x_spl(ceil(out_pts/2)+1:end))]; 
%Summary plot to compare input, output, and spline functions 
figure();hold on; axis equal; 
fnplt(spl_US, 'r') 
fnplt(spl_LS, 'g') 
plot(x_US, y_US, 'k.') 
plot(x_LS, y_LS, 'k.') 
plot(x_spl, y_spl, 'bo') 
legend('US Spline', 'LS Spline', 'US Data', 'LS Data', 'Output Points') 
%Saves splined output point and angle of attack to file x_output 
save('x_output', 'x_spl', 'y_spl', 'alpha_deg') 
%Writes splined output X and Y locations to data file trefxy 
fid = fopen('trefxy', 'w'); 
for i =1:length(x_spl) 
    fprintf(fid, '%12.8f %12.8f\n', x_spl(i), y_spl(i)); 
end 
fclose(fid); 
%run brockthesis    %Starts Brockett's thesis for comparison of data. 
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Appendix B:   MATLAB Code of Brockett’s Work 
(Brockett.m) 

%ADAPTATION OF BROCKETT'S THESIS WORK.  Code Modified by Chris Peterson. 
%Code allows user specified input, and plots pressure distribution for 
%given input. 
  
clear all; clc; 
prnt2scrn   = 1;        %Turn on (1) or off (0) screen output 
  
run CfmlInput           %Allows user specified setting and data input. 
  
%Preallocate memory for Improved Speed 
CO = zeros(1,18);SO = zeros(1,18);X = zeros(1,18);ANTRP=zeros(1,12); 
CNT=zeros(1,12);XA=zeros(1,12);SNT=zeros(1,12);COL=zeros(1,17); 
COT=zeros(1,17);Z1=zeros(12,17);Z2=zeros(12,17);Z3=zeros(12,17); 
Z4=zeros(12,17);EE=zeros(1,NX);DD=zeros(1,37); 
  
if IDEN == 0 
    SY=zeros(1,19); 
    VL=zeros(1,19); 
elseif IDEN > 0 
    SY=zeros(1,36); 
    VL=zeros(1,36); 
end 
  
% 
%   CALCULATION OF CONSTANTS 
% 
AN=18.0; 
for I=1:18 
    TA=(I-1)*.17453293; 
    CO(I)=cos(TA); 
    SO(I)=sin(TA); 
    X(I)=.5*(1.+CO(I)); 
end 
SO(19)=0.; 
CO(19)=-1.; 
X(19)=0.; 
for I=20:37; 
    IA=38-I; 
    X(I)=X(IA); 
    CO(I)=CO(IA); 
    SO(I)=-SO(IA); 
end 
  
%   INTERMEDIATE POINTS AND CORRESPOINDING X VALUES 
  
for I=1:9 
    ANTRP(I)=(I)*.017453293; 
end 
ANTRP(10)=12.5*.017453293; 
ANTRP(11)=15.0*.017453293; 
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ANTRP(12)=17.5*.017453293; 
for I=1:12 
    CNT(I)=cos(ANTRP(I)); 
    XA(I)=.5*(1-CNT(I)); 
    SNT(I)=sin(ANTRP(I)); 
end 
  
%   CALCULATION OF VECTORS USED TO OBTAIN SLOPE AND VELOCITY 
  
for I=1:2:17 
    COL(I) = -1/(AN*(1-CO(I+1))); 
end 
  
COEF   = 1; 
for I=1:17 
    COEF   = -COEF; 
    COT(I)  = COEF*SO(I+1)/(1-CO(I+1))*0.5; 
end 
  
for I=1:12 
    COEF    = 1; 
    CNNT    = cos(18*ANTRP(I)); 
    SNNT    = sin(18*ANTRP(I)); 
    for J=1:17 
        COEF=-COEF; 
        TA  = (-CNT(I)-CO(J+1)); 
        TB  = (COEF*CNNT-1)/36; 
        TC  = COEF*SNNT*0.5; 
        TD  = TA*TA; 
        TE  = (1+CO(J+1)*CNT(I))/TD; 
        TF  = SO(J+1)*SNT(I)/TD; 
        TD  = COEF*CNNT*0.5/TA; 
        Z1(I,J)  = TB*TF+TC*SO(J+1)/TA; 
        Z2(I,J)  = TB*TE+TC*SNT(I)/TA; 
        Z3(I,J)  = (TC/18.)*TF-TD*SO(J+1); 
        Z4(I,J)  = (TC/18.)*TE-TD*SNT(I); 
    end 
end 
%   READ INPUT  (REPLACED WITH FUNCTION ARGS) 
% 
%C     ARBITRARY INPUT SUBROUTINE 
% 
if IPM > 0 
    if prnt2scrn == 1 
        fprintf('    INPUT AT ARBITRARY X VALUES\n')     
    end 
    if IDEN > 0    %(Not symmetric)                 
        if ILK > 0 %(:INPUT TAU, RHO, RHO) 
            if prnt2scrn == 1 
                fprintf('   THICKNESS  CAMBER   NOSE RADIUS\n') 
                fprintf('%12.6f',TAO,F,RHO) 
                fprintf('\n\n') 
                fprintf('       X          YT          YC        DYC/DX\n') %       
PRINT 31 
            end 
            RHO = RHO*TAO^2; 
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            for I=1:NX  
                AT = AT_in(I); 
                YT = YT_in(I); 
                YC = YC_in(I); 
                YCP = YCP_in(I); 
                IA=2*NX-I;          
                if AT > 0           
                    if YCP ~= 0 
                        THT     = atan(YCP*F); 
                        SA      = sin(THT)*YT*TAO; 
                        CA      = cos(THT)*YT*TAO; 
                        CC(I)   = AT-SA; 
                        Y(I)    = YC*F+CA; 
                        CC(IA)  = AT+SA; 
                        Y(IA)   = YC*F-CA;  
                    elseif YCP == 0 
                        Y(I)    = YC*F+YT*TAO;  
                        Y(IA)   = YC*F-YT*TAO;  
                        CC(I)   = AT; 
                        CC(IA)  = AT;  
                    end 
                elseif AT == 0 
                    THT = atan(YCP*F); 
                    Y(I)= RHO*sin(THT); 
                    YN  = Y(I);         
                    CC(I)= -RHO*(1.-cos(THT));  
                    XN  = CC(I); 
                end 
                if prnt2scrn == 1 
                    fprintf('%12.6f',AT,YT,YC,YCP) 
                    fprintf('\n') 
                end 
            end 
            NX = 2*NX-1; 
        elseif ILK == 0     
            if prnt2scrn == 1 
                fprintf('      X             Y\n') 
                fprintf('%12.6f', XN, YN) 
                fprintf('\n') 
                for I = 1:NX 
                    CC(I)=CC_in(I); 
                    Y(I) =Y_in(I); 
                    fprintf('%12.6f',CC(I),Y(I)) 
                    fprintf('\n') 
                end 
            else 
                for I = 1:NX 
                    CC(I)=CC_in(I); 
                    Y(I) =Y_in(I); 
                end 
            end 
        end 
        IMS     = 37; 
        B       = 1-XN;  
        AWK     = atan(YN/B); 
        SA      = sin(AWK);  
        CA      = cos(AWK);  
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        AWK     = AWK*180/pi; 
        if prnt2scrn == 1 
            fprintf('\n\nROTATED AND SHRUNK INPUT\n') 
            fprintf('ANGLE OF ROTATION= %9.6f DEG,\n', AWK) 
            fprintf('  NOTE: THIS ANGLE WILL BE ADDED TO EACH OF THE INPUT 
ANGLES\n') 
            fprintf('      X           Y        PHI,DEG\n') 
        end 
        for I = 1:NX                   
            CC(I)   = (CC(I)-XN)/B;  
            Y(I)    = (Y(I)-YN)/B; 
            ALTER   = CC(I); 
            CC(I)   = (CC(I)*CA-Y(I)*SA)*CA; 
            Y(I)    = (Y(I)*CA+ALTER*SA)*CA; 
        end 
        ND  = NX-1; 
        A   = (NX+1)/2; 
        for I=2:ND  
            B       = I; 
            EE(I)   = 2*CC(I)-1; 
            if EE(I) ~= 0 
                EE(I)=atan(sqrt(abs(1-EE(I)^2))/EE(I)); 
                if (B-A) <= 0 
                    if (CC(I)-.5) < 0 
                        EE(I) = EE(I)+pi; 
                    end 
                elseif (B-A) > 0  
                    if (CC(I)-0.5) < 0 
                        EE(I) = pi+abs(EE(I)); 
                    elseif (CC(I)-0.5) > 0  
                        EE(I)=2*pi - EE(I);  
                    elseif (CC(I)-0.5) == 0 
                        EE(I)=1.5*pi;     
                    end                     
                end 
            elseif EE(I) == 0                 
                if (B-A) == 0          
                    error('ERRONEOUS INPUT') 
                elseif (B-A) < 0;         
                    EE(I)=pi/2;            
                elseif (B-A) > 0;          
                    EE(I)=1.5*pi;          
                end                 
            end 
        end                                 
        EE(1)=0;     
        EE(NX)=2*pi;    
        for I=1:NX       
            A=EE(I)*180/pi; 
            if prnt2scrn == 1 
                fprintf('%12.6f',CC(I),Y(I),A) 
                fprintf('\n') 
            end 
        end                             
    elseif IDEN == 0        
        if prnt2scrn == 1 
            fprintf('      X           Y        PHI,DEG\n') 
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        end 
        ND=NX-1; 
        for I=1:NX 
            CC(I)=CC_in(I); 
            Y(I)=Y_in(I); 
        end 
        EE(1)   =0; 
        if prnt2scrn == 1 
            fprintf('      X           Y        PHI,DEG\n') 
            fprintf('%12.6f',CC(1),Y(1),EE(1)) 
            fprintf('\n') 
        end 
        for I = 2:ND 
            EE(I)   = 2*CC(I)-1; 
            if EE(I) ~= 0 
                EE(I) = atan(sqrt(abs(1-(EE(I))^2))/EE(I)); 
                if (CC(I)-0.5) < 0  
                    EE(I) = EE(I)+pi; 
                           
                elseif (CC(I)-0.5) == 0  
                    EE(I) = pi/2;  
                end 
            elseif EE(I)==0                
                EE(I) = pi/2;   
            end 
            A   = EE(I)*180./pi; 
            if prnt2scrn == 1 
                fprintf('%12.6f',CC(I),Y(I),A) 
                fprintf('\n') 
            end 
        end 
        EE(NX)  = pi;                 
        A       = 180;             
        if prnt2scrn == 1 
            fprintf('%12.6f',CC(NX),Y(NX),A) 
            fprintf('\n') 
        end 
        IMS     = 19; 
        AWK     = 0; 
    end 
  
    I       = 1;  
    CC(1)   = Y(1); 
    R       = 0; 
    Y1      = Y(2)-Y(1); 
    Y2      = Y(3)-Y(1); 
    Y3      = Y(4)-Y(1); 
    A       = (Y1*EE(3)-Y2*EE(2))/(EE(2)*EE(3)*(EE(2)-EE(3)));  
    B       = (Y2*EE(4)-Y3*EE(3))/(EE(4)*EE(3)*(EE(3)-EE(4)));  
    A3      = (A-B)/(EE(2)-EE(4)); 
    A2      = A-A3*(EE(2)+EE(3)); 
    A1      = Y1/EE(2)-EE(2)*(A2+A3+EE(2));  
    R       = R + pi/18; 
    I       = I + 1; 
    CC(I)   = Y(1)+R*(A1+R*(A2+R*A3)); 
    if (R-EE(2)) <= 0  
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        while (R-EE(2)) <= 0   
            R       = R + pi/18; 
            I       = I + 1; 
            CC(I)   = Y(1)+R*(A1+R*(A2+R*A3)); 
        end 
    end 
    NP  = NX-2;                         
    Y1  = Y(ND)-Y(NX);                 
    Y2  = Y(NP)-Y(NX);    
    N3  = NX-3;      
    Y3  = Y(N3)-Y(NX);  
    R   =  0;   
    X1  = EE(ND)-EE(NX);  
    X2  = EE(NP)-EE(NX);  
    X3  = EE(N3)-EE(NX); 
    A   = (Y1*X2-Y2*X1)/(X1*X2*(X1-X2)); 
    B   = (Y2*X3-Y3*X2)/(X3*X2*(X2-X3)); 
    A3  = (A-B)/(X1-X3); 
    A2  = A-A3*(X1+X2); 
    A1  = Y1/X1-X1*(A2+A3*X1); 
    I   = IMS; 
    R   = R-pi/18; 
    I   = I-1; 
    CC(I) = Y(NX)+R*(A1+R*(A2+R*A3)); 
    A   = R+EE(NX); 
    if (A-EE(ND)) > 0 
        while (A-EE(ND)) > 0 
            R   = R-pi/18; 
            I   = I-1; 
            CC(I) = Y(NX)+R*(A1+R*(A2+R*A3)); 
            A   = R+EE(NX); 
        end 
    end 
    for I = 2:IMS                       
        R = (I-1)*pi/18; 
        for J = 2:NP 
            if (R-EE(J)) > 0 
                if (R-EE(J+1)) < 0  
                    JP  = J-1; 
                    X1  = EE(J)-EE(JP); 
                    X2  = EE(J+1)-EE(JP); 
                    X3  = EE(J+2)-EE(JP); 
                    Y1  = Y(J)-Y(JP); 
                    Y2  = Y(J+1)-Y(JP); 
                    Y3  = Y(J+2)-Y(JP); 
                    A   = (Y1*X2-Y2*X1)/(X1*X2*(X1-X2)); 
                    B   = (Y2*X3-Y3*X2)/(X3*X2*(X2-X3)); 
                    A3  = (A-B)/(X1-X3); 
                    A2  = A-A3*(X1+X2); 
                    A1  = Y1/X1-X1*(A2+A3*X1); 
                    R   = R-EE(JP); 
                    CC(I)   = Y(JP)+R*(A1+R*(A2+R*A3)); 
                end 
            elseif (R-EE(J)) == 0 
                CC(I)   = Y(J); 
            end 
        end 
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    end 
    if IDEN == 0 
        for I = 1:18 
            IA      = 38-I; 
            CC(IA)  = -CC(I); 
        end 
    end 
    CC(IMS)     = Y(NX); 
    if prnt2scrn == 1 
        fprintf('\n\nINPUT AT REQUIRED X VALUES\n') 
        fprintf('      INDEX        X          YU          YL\n') 
    end 
    for I = 1:19 
        IA      = 38-I; 
        Y(I)    = CC(I); 
        Y(IA)   = CC(IA); 
        J       = I-1; 
        Input_at_reqd_x(I,:) = [J X(I) Y(I) Y(IA)]; 
        if prnt2scrn == 1 
            fprintf('%12.6f',J,X(I),Y(I),Y(IA)) 
            fprintf('\n');  
        end 
    end 
    Y(19)       = 0; 
    if prnt2scrn == 1 
        fprintf('  NOTE: LE AND TE ORDINATES SET=0\n') 
    end 
    ABA     = Y(1); 
    Y(1)    = 0; 
elseif IPM == 0 
    AWK = 0; 
    if IDEN == 0 
        Y(19)   = 0; 
        ABA     = Y(1); 
        Y(1)    = 0; 
        for I = 1:18 
            IA      = 38-I; 
            Y(IA)   = -Y(I); 
        end 
    elseif IDEN > 0 
        Y(37)   = -Y(1); 
        ABA     = Y(1); 
        Y(1)    = 0; 
    end 
end 
% 
%   CALCULATION OF PROFILE SLOPE AND COTANGENT INTEGRAL 
% 
if IDEN < 0 
    ERROR('ERRONEOUS INPUT'); 
elseif IDEN == 0 
    MAD = 19; 
elseif IDEN > 0 
    MAD = 36; 
end 
  
for I=1:MAD 
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    SY(I)  = 0; 
    VL(I)  = Y(I)*9; 
    for J=1:17 
        LA = I-J; 
        if LA <= 0; 
            LA = 36+LA; 
        end 
        KB=I+J; 
        if (KB-36) > 0; 
            KB = KB - 36; 
        end 
        SY(I) = SY(I) + (Y(LA) - Y(KB))*COT(J); 
        VL(I) = VL(I) + (Y(LA) + Y(KB))*COL(J); 
    end 
end 
  
VL(37) = VL(1);    
SY(37) = SY(1); 
if IDEN == 0  
    for I       = 2:18   
        IA      = 38-I; 
        VL(IA)  = -VL(I); 
        SY(IA)  = SY(I); 
    end  
end 
Y(1)=ABA; 
% 
%   CALCULATION OF BASE PROFILE VELOCITY AND INCREMENT DUE TO ANGLE OF 
%   ATTACK 
if prnt2scrn == 1 
    fprintf('\n\n                         PROFILE CONSTANTS\n\n'); 
    fprintf('\t   X\t\t\tY\t\t\tC\t\t\tD\t\t\tE\t\t\t  DY/DPHI\n'); 
end 
for I=1:37 
    D2      = sqrt(SY(I)^2 + (SO(I)^2)/4.); 
    CC(I)   = (VL(1)-VL(I)-SO(I)/2.)/D2; 
    DD(I)   = (SY(I)-SY(1)+(CO(I)-1)/2)/D2; 
    AAAAA   = (X(I)-1)/(2*D2)+X(I)*DD(I); 
    TA      = -CC(I); 
    TB      = -DD(I); 
    EE(I)   = D2; 
    Profile_Const(I,:) = [X(I) Y(I) TA TB AAAAA SY(I)]; 
    if prnt2scrn == 1 
        fprintf('%12.6f %12.6f %12.6f %12.6f %12.6f %12.6f\n',... 
            X(I),Y(I),TA,TB,AAAAA,SY(I)); 
    end 
end 
if prnt2scrn == 1 
    fprintf('\n\n NON-DIMENSIONAL VELOCITY, V=(C*cos(ALFA)+D*sin(ALFA))*(1-
/+DELTA*sqrt(X-X^2))+DELTA*E )\n') 
end 
% 
%   CALCULATION OF LIFT CURVE SLOPE AND ANGLE OF ZERO LIFT,THEORY 
% 
P1  = (1+2*SY(1))^2+4*VL(1)^2; 
P   = sqrt(P1); 
AOL = atan(2*VL(1)/(1+2*SY(1))); 
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AXL = AOL*180/pi; 
if prnt2scrn == 1 
    fprintf(' DCL/D(ALPHA)/2PI (THEORY)=%10.6f\n ANGLE,CL=0 (THEORY) =%10.6f 
DEG \n\n\n\n'... 
        ,P, AXL) 
end 
% 
%   CALCULATION OF BASE PROFILE VELOCITY AND INCREMENT DUE TO ANGLE OF 
%   ATTACK AT INTERMEDIATE POINTS 
% 
if prnt2scrn == 1 
    fprintf('                         PROFILE CONSTANTS\n\n') 
    fprintf('                        INTERMEDIATE VALUES\n') 
    fprintf('                           UPPER SURFACE\n') 
    fprintf('\t\tX\t\t\tC \t\t\tD \t\t\tE \t\tDY/DPHI  \n') 
end 
  
for I=1:12 
    CD1 = 0.0; 
    CD2 = 0.0; 
    CD3 = 0.0; 
    CD4 = 0.0; 
    for J=1:17 
        JC = 37-J; 
        YT = Y(J+1)-Y(JC); 
        YC = Y(J+1)+Y(JC); 
        CD1 = CD1+YT*Z1(I,J); 
        CD2 = CD2+YC*Z2(I,J); 
        CD3 = CD3+YT*Z3(I,J); 
        CD4 = CD4+YC*Z4(I,J); 
    end 
    DYU     = CD3+CD4; 
    DYL     = CD3-CD4; 
    CTU     = CD1+CD2; 
    CTL     = -CD1+CD2; 
    TA      = SNT(I)*SNT(I)*.25; 
    TB      = .5*(1.+CNT(I)); 
    ANTRP(I)= DYL; 
    E1(1,I) = sqrt(DYU*DYU+TA); 
    E1(2,I) = sqrt(DYL*DYL+TA); 
    C1(1,I) = (VL(1)-CTU-SNT(I)*.5)/E1(1,I); 
    C1(2,I) = (VL(1)-CTL+SNT(I)*.5)/E1(2,I); 
    D1(1,I) = (DYU-SY(1)-TB)/E1(1,I); 
    D1(2,I) = (DYL-SY(1)-TB)/E1(2,I); 
    AAAAA   = (XA(I)-1.)/(2.*E1(1,I))+XA(I)*D1(1,I); 
    TA      = -C1(1,I); 
    TB      = -D1(1,I); 
    Profile_Const_INT_U(I,:) = [XA(I) TA TB AAAAA DYU]; 
    if prnt2scrn == 1 
        fprintf('%12.6f%12.6f%12.6f%12.6f%12.6f\n',... 
            XA(I),TA,TB,AAAAA,DYU) 
    end 
end 
if prnt2scrn == 1 
    fprintf('\n\n                           LOWER SURFACE\n') 
    fprintf('\t\tX\t\t\tC \t\t\tD \t\t\tE \t\tDY/DPHI  \n') 
end 
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for I=1:12 
    AAAAA   = (XA(I)-1.)/(2.*E1(2,I))+XA(I)*D1(2,I); 
    TA      = -C1(2,I); 
    TB      = -D1(2,I); 
    Profile_Const_INT_L(I,:) = [XA(I) TA TB AAAAA ANTRP(I)]; 
    if prnt2scrn == 1 
        fprintf('%12.6f',XA(I),TA,TB,AAAAA,ANTRP(I)) 
        fprintf('\n') 
    end 
end 
  
if ICL == 0 
    AOLE    = AOLE+AWK; 
    AXL     = AOLE*.017453293; 
end 
% 
%   CALCULATION OF THEORETICAL AND DISTORTED PRESSURE DISTRIBUTION 
% 
if IPMIN > 0 
    if prnt2scrn == 1 
        fprintf('\n\n                         MINIMUM PRESSURES\n') 
        fprintf('               ETA = %8.6f,',ETA) 
        fprintf('   ALFA(CL=0) = %10.6f\n\n',AOLE) 
        fprintf('    ALFA        CL         CP MIN      MAX VELOC       X      
CM(X=0.25)\n') 
    end 
end 
for I=1:JA 
    if IPMIN == 0 
        if prnt2scrn==1 
            fprintf('\n\n                       PRESSURE DISTRIBUTION\n') 
        end 
        if IDEN == 0 
            if prnt2scrn == 1 
                fprintf('                        SYMMETRICAL PROFILE\n\n') 
            end 
        elseif IDEN > 0 
            if prnt2scrn == 1 
                fprintf('                      NON-SYMMETRICAL PROFILE\n\n') 
            end 
        end 
        if prnt2scrn == 1 
            fprintf('    ALFA        CL          DELTA      sin(ALFA)  LIFT 
SLOPE   ALFA,CL=0\n') 
        end 
    end 
    DMALFA  = ALFA(I)+AWK; 
    ANG     = DMALFA*pi/180; 
    if ICL ~= 0 
        CL  = CLE(I); 
    elseif ICL == 0 
        CL  = 2*pi*ETA*(ANG-AXL); 
    end 
    DEL     = ANG - AOL - atan(CL/sqrt(39.478418*P1 - CL^2) ); 
    SA      = sin(ANG); 
    CA      = cos(ANG); 
    if IPMIN == 0 
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        if prnt2scrn == 1 
            fprintf('%12.6f',DMALFA,CL,DEL,SA,ETA,AOLE) 
            fprintf('\n') 
            fprintf('\n\n      X     POTNL VELOC  VISC INCRM  VISC VELOC   
POTNL P/Q    VISC P/Q\n') 
        end 
    end 
    APG     = ANG-DEL; 
    CAP     = cos(APG); 
    SAP     = sin(APG); 
    CLINT   = 0.0; 
    CDINT   = 0.0; 
    CMXINT  = 0.0; 
    CMYINT  = 0.0; 
    SIGMA   = 0.0; 
    for J=1:37 
        APG     = ANG-DEL*X(J); 
        CAV     = cos(APG); 
        SAV     = sin(APG); 
        VELP    = abs(CC(J)*CA+DD(J)*SA); 
        VELV    = (1-DEL*SO(J)/2.)*((CC(J)-VL(1)/EE(J))*CAV+(DD(J)... 
            +(.5+SY(1))/EE(J))*SAV+VL(1)/EE(J)*CAP-(.5+SY(1))/EE(J)*SAP); 
        VELV    = abs(VELV); 
        ANCR    = VELV-VELP; 
        PRESP   = 1-(VELP)^2; 
        PRESV   = 1-(VELV)^2; 
        ABD     = pi/AN*PRESV; 
        ABC     = ABD*SO(J)/2; 
        CMXINT  = CMXINT+ABC*(X(J)-.25); 
        if IPMIN == 0 
            CLINT   = CLINT-ABC; 
            if (J-1) > 0 
                ABD     = ABD*SY(J); 
                CDINT   = CDINT-ABD; 
                if (J-37) < 0 
                    CMYINT  = CMYINT-ABD*Y(J); 
                end 
            end 
            Press_Dist(J,:) =  [X(J) VELP ANCR VELV PRESP PRESV]; 
            if prnt2scrn == 1 
                fprintf('%12.6f',X(J),VELP,ANCR,VELV,PRESP,PRESV) 
                fprintf('\n') 
            end 
        elseif IPMIN > 0 
            if (SIGMA-PRESV) >=0  
                SIGMA   = PRESV; 
                XMIN    = X(J);  
                VMAX    = VELV; 
            end 
        end 
        if (37-J) == 0 
            if IPMIN == 0 
                if prnt2scrn == 1 
                    fprintf('\nINTEGRATED CN=%10.6f\n',CLINT)                        
%  4508 PRINT 17,CLINT 
                    fprintf('INTEGRATED CC=%10.6f\n',CDINT)                        
%       PRINT 18,CDINT 
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                    fprintf('INTEGRATED CM(X)=%10.6f, CW ABT 
X=0.25\n',CMXINT)      %       PRINT 19,CMXINT 
                    fprintf('INTEGRATED CM(Y)=%10.6f, CW ABT Y=0\n',CMYINT)        
%       PRINT 20,CMYINT 
% 
%   CALCULATION AT INTERMEDIATE POINTS 
% 
                    fprintf('\n\n                       PRESSURE 
DISTRIBUTION\n\n')     %       PRINT 8 
                    fprintf('    ALFA        CL          DELTA      sin(ALFA)  
LIFT SLOPE   ALFA,CL=0\n')   %       PRINT 12 
                    fprintf('%12.6f', DMALFA,CL,DEL,SA,ETA,AOLE)                    
%       PRINT 2, DMALFA,CL,DEL,SA,ETA,AOLE 
                    fprintf('\n\n                        INTERMEDIATE 
VALUES\n')          %       PRINT 14 
% C 
% C     UPPER SURFACE NOSE VELOCITY 
% C 
                    fprintf('\n                          UPPER SURFACE \n')            
%       PRINT 15 
                    fprintf('      X     POTNL VELOC  VISC INCRM  VISC VELOC   
POTNL P/Q    VISC P/Q   \n') %       PRINT 13 
                end 
            end 
            for K=1:12  
                APG     = ANG-DEL*XA(K); 
                CAV     = cos(APG); 
                SAV     = sin(APG); 
                VELP    = abs(C1(1,K)*CA+D1(1,K)*SA); 
                VELV    = abs((1.-DEL*SNT(K)/2.)*((C1(1,K)-VL(1)... 
                    /E1(1,K))*CAV+(D1(1,K)+(.5+SY(1))/E1(1,K))*SAV+... 
                    (VL(1)*CAP-(.5+SY(1))*SAP)/E1(1,K))); 
                ANCR    = VELV-VELP; 
                PRESP   = 1 -(VELP)^2; 
                PRESV   = 1 -(VELV)^2; 
                if IPMIN > 0 
                    if (SIGMA-PRESV) >= 0 
                        SIGMA   = PRESV; 
                        XMIN    = XA(K); 
                        VMAX    = VELV; 
                    end 
                elseif IPMIN == 0  
                    Press_Dist_INT_U(K,:) = [XA(K) VELP ANCR VELV PRESP 
PRESV]; 
                    if prnt2scrn == 1 
                        fprintf('%12.6f', XA(K),VELP,ANCR,VELV,PRESP,PRESV) 
                        fprintf('\n') 
                    end 
                end 
            end      
% 
%     LOWER SURFACE NOSE VELOCITY 
% 
            if IPMIN == 0 
                if prnt2scrn == 1 
                    fprintf('\n                           LOWER SURFACE\n') 
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                    fprintf('      X     POTNL VELOC  VISC INCRM  VISC VELOC   
POTNL P/Q    VISC P/Q\n') 
                end 
            end 
            for K=1:12               
                APG     = ANG-DEL*XA(K); 
                CAV     = cos(APG); 
                SAV     = sin(APG);  
                VELP    = abs(C1(2,K)*CA+D1(2,K)*SA); 
                VELV    = abs((1.+DEL*SNT(K)/2.)*((C1(2,K)-VL(1)... 
                    /E1(2,K))*CAV+(D1(2,K)+(.5+SY(1))/E1(2,K))... 
                    *SAV+(VL(1)*CAP-(.5+SY(1))*SAP)/E1(2,K))); 
                ANCR    = VELV - VELP; 
                PRESP   = 1-VELP^2; 
                PRESV   = 1-VELV^2; 
  
                if IPMIN > 0  
                    if (SIGMA-PRESV) >= 0  
                        SIGMA   = PRESV; 
                        XMIN    = XA(K); 
                        VMAX    = VELV; 
                    end 
                elseif  IPMIN == 0 
                    Press_Dist_INT_L(K,:) = [XA(K) VELP ANCR VELV PRESP 
PRESV]; 
                    if prnt2scrn == 1 
                        fprintf('%12.6f',XA(K),VELP,ANCR,VELV,PRESP,PRESV) 
                        fprintf('\n') 
                    end 
                end 
            end 
            if IPMIN > 0  
                Min_Press(I,:) = [DMALFA CL SIGMA VMAX XMIN CMXINT]; 
                if prnt2scrn == 1 
                    fprintf('%12.6f',DMALFA,CL,SIGMA,VMAX,XMIN,CMXINT) 
                    fprintf('\n') 
                end 
            end 
        end 
    end          
end    
%   END OF BROCKETT'S CODE 
  
%   Combine Profile Constant Data in Order 
i = 1; 
j = length(Profile_Const_INT_U); 
step = 1; 
while j>0 && i<length(Profile_Const) 
    A = Profile_Const(i,1); 
    B = Profile_Const_INT_U(j,1); 
    if A > B 
        Profile_Comb(step,:) = Profile_Const(i,:); 
        i = i + 1; 
        step = step + 1; 
    elseif B > A 
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        Profile_Comb(step,:) = [Profile_Const_INT_U(j,1) 0 
Profile_Const_INT_U(j,2:end)]; 
        j = j -1; 
        step = step + 1; 
    end 
end 
j = 1; 
while j <= length(Profile_Const_INT_L) || i <= length(Profile_Const) 
    if B < A && j <= length(Profile_Const_INT_L) 
        Profile_Comb(step,:) = [Profile_Const_INT_L(j,1) 0 
Profile_Const_INT_L(j,2:end)]; 
        j = j + 1; 
        if j <= length(Profile_Const_INT_L) 
            B = Profile_Const_INT_L(j,1); 
        end 
        step = step + 1; 
    elseif A < B || j > length(Profile_Const_INT_L) 
        Profile_Comb(step,:) = Profile_Const(i,:); 
        i = i + 1; 
        if i <= length(Profile_Const) 
            A = Profile_Const(i,1); 
        end 
        step = step + 1; 
    end 
end 
  
%   Combine Pressure Distribution Data in Order 
if IPMIN == 0 
    i = 1; 
    j = length(Press_Dist_INT_U); 
    step = 1; 
    while j>0 && i<length(Press_Dist) 
        A = Press_Dist(i,1); 
        B = Press_Dist_INT_U(j,1); 
        if A > B 
            Press_Comb(step,:) = Press_Dist(i,:); 
            i = i + 1; 
            step = step + 1; 
        elseif B > A 
            Press_Comb(step,:) = Press_Dist_INT_U(j,:); 
            j = j -1; 
            step = step + 1; 
        end 
    end 
    j = 1; 
    while j <= length(Press_Dist_INT_L) || i <= length(Press_Dist) 
        if B < A && j <= length(Press_Dist_INT_L) 
            Press_Comb(step,:) = Press_Dist_INT_L(j,:); 
            j = j + 1; 
            if j <= length(Press_Dist_INT_L) 
                B = Press_Dist_INT_L(j,1); 
            end 
            step = step + 1; 
        elseif A < B || j > length(Press_Dist_INT_L) 
            Press_Comb(step,:) = Press_Dist(i,:); 
            i = i + 1; 
            if i <= length(Press_Dist) 



 60 

                A = Press_Dist(i,1); 
            end 
            step = step + 1; 
        end 
    end 
  
end 
  
%   Calls XFOIL calculate pressure distribution and imports data 
cmd = ['xfoil.exe LOAD trefxy OPER ALFA ', num2str(ALFA),... 
    ' OPER CPWR CPX']; 
system(cmd);                         
fid = fopen('CPX'); 
xfoil_data_in = textscan(fid, '%f64  %f64', 'headerlines', 1); 
fclose(fid); 
xfoil_x = xfoil_data_in{1}; 
xfoil_cp = xfoil_data_in{2}; 
  
%   Plots Data from Brockett and Xfoil on same graph as Trefftz. 
open('Trefftz.fig') 
plot(Press_Comb(:,1), -Press_Comb(:,5), 'ro-') 
plot(Press_Comb(:,1), -Press_Comb(:,6), 'r.-') 
plot(xfoil_x, -xfoil_cp, 'bx-') 
legend('Conformal Transformation','Brockett Method (Inviscid)',... 
    'Brockett Method (Viscid)','XFOIL Calc') 
savefile = ['K-T,alfa=',num2str(ALFA),]; 
saveas(gcf, savefile); 
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Appendix C:   Brockett.m Variable Descriptions 
Function variables are specified as those variable that instruct the MATLAB version 

of Brockett’s work how to process the data, which data will be input, and how the 

data is formatted.  The following paragraph provide a brief description of these 

variables, and how they are used in Brockett.m 

JA:  Specifies the number of angles of attack that will be calculated.  Although not 

specified directly by the user, the scripts in Appendix C:  calculate this value based 

on the number of inputs for the ALFA vector.  It is recommended that multiple 

angles of attack be processed individually, since output for multiple angles is only 

printed to the screen. 

KA:  This variable was used originally by Brockett for processing multiple jobs.  This 

functionality is not used in the MATLAB version.  Separate jobs are specified by the 

appropriate script file (i.e. ARB_IN.m, REQ_IN.m, etc), in which the use specifies 

the job parameters.  The job specification script is specified by the “run” command 

in the beginning of Brockett.m. 

IPMIN:  Specifies whether or not minimum pressure distribution data will be 

reported. Should normally be set to 0.  Plotting and screen output will not be 

available if minimum pressure data is not calculated.  If screen output is not desired, 

use the ‘print2scr’ variable below. 

ALFA:  Vector of angles of attack to be calculated.  Normally a single value.  Note: 

If multiple angles of attack are specified, output for each angle of attack will be only 

to screen in tabular format.  Plots for each angle of attack will not be generated. 

IDEN:  Specifies whether input data points are for a symmetric foil shape. 

Symmetric data is designated by IDEN = 0, or non-symmetric IDEN = 1.  Symmetric 

data can either be in the format of offsets, or camber and thickness data. 
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IPM:  IPM = 0 specifies that ordinate information will be input at required locations.  

Required locations are specified by: 
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When input at required station is specified, only the upper surface, Y0 through Y17, 

are specified for symmetric foils.  All others, Y0 through Y35 are specified.  If IPM = 1 

(arbitray input locations), user must define the number of locations (NX) that will be 

input. 

ICL:  ICL = 1 if experimental lift coefficient is specified rather that angle of zero lift 

(AOLE) and lift-slope curve coefficient (ETA).  If ICL = 0, AOLE and ETA must be 

set to zero.  Otherwise, if ICL = 0, AOLE and ETA must be specified.  AOLE and 

ETA values do not affect inviscid calculation, and are only used for the empirical 

modification to account for viscous effects.  If unknown, may be set to 0 for inviscid 

calculations. 

CLE:  If ICL = 1, user must specify experimental lift coefficients corresponding to 

input angles of attack (ALFA).  ALFA and CLE vector must be of equal length. 

ILK:  ILK = 0 specifies that offsets will be input in X, Y format.  CC is vector of x-

values, and Y is vector of corresponding y-offset values.  For symmetric foils, give 

only upper surface from trailing edge to nose.  Last point must be (0, 0).  For non-

symmetric foils, must specify XN and YN which are x and y ordinates of nose 

location.  Sample scripts locate this point automatically from input vectors CC and 

Y.  Order for non-symmetric foils must be from trailing edge (1, X.X), along upper 

surface to (XN, YN), and back to trailing edge (1.0, X.X). 

ILK = 1 specifies that foil surface locations will be specified by thickness ratio 

(TAO), camber (F), and leading edge radius (RO).  Input required is x-location 

(AT_in), thickness value (YT_in), camber value (YC_in), and camberline slope 
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(YCP_in).  AT_in, YT_in, YC_in, and YCP_in start at trailing edge(x=1) and go to 

leading edge (x=0), and are of length NX. 

foil_name:  User specified foil designation.  Used for plot legend and/or titles. 
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Appendix D:   Sample Input Scripts for Brockett.m. 
REQD_IN.m 

%   Written by Chris Peterson 
  
%   This file inputs data to be processed by MATLABs version of  
%   Brockett's Thesis program.  The data is from fig 3b, pg 67. 
%   Format is for input at required stations, angle of attack specified 
  
ALFA    = 4.09;         %ANGLE OF ATTACK 
JA      = length(ALFA); %NUMBER OF ANGLES 
IPMIN   = 0;            %0:Report Data, 1: No Data 
IDEN    = 0;            %0:SYMM, 1:NONSYMM 
IPM     = 0;            %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS 
ICL     = 0;            %0:USE ALPHA, 1: USE INPUT CLE 
AOLE    = 0;            %Experimental angle of zero lift 
ETA     = 0.959;        %Lift curve-slope coeff 
foil_name = 'RAE-101,00-10'; 
  
%   Y_in is array of ordinates, trailing edge to leading edge along upper 
%   surface, then leading edge to trailing edge along lower surface.  Only 
%   Yn n=0->17 for symmetric foils.  All others n=0->35 
Y_in = [0  .00068    .0027    .00599    .01046    .01597    .02236... 
    .029345    .03636    .04267    .047445    .04985    .04885... 
    .04475    .038405    .03034    .02093    .01071 ]; 
  
%   Formats Y for both surfaces 
Y = [Y_in 0 fliplr(-Y_in)]; 
  
%Plot input 
figure(1) 
axis equal; 
hold on; 
plot((1+cos(0:2*pi/36:2*pi))/2, Y, 'g.') 
plot((1+cos(0:2*pi/36:2*pi))/2, Y, 'g') 
legend('Input to Brockett') 
title(foil_name) 
  
NX = 0;             %Req'd to set variable EE(used in Arb Input) 
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ARB_IN.m 

%   Written by Chris Peterson 
  
%   This file inputs data to be processed by the MATLAB version of  
%   Brockett's Thesis program.  The data is from fig 4b, pg 69. 
%   Format is for arbitrary input stations, non-symmetrical, 
%   lift coefficient specified 
  
IPMIN   = 0;            %0:Report Data, 1: No Data 
IDEN    = 1;            %0:SYMM, 1:NONSYMM 
IPM     = 1;            %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS 
ICL     = 1;            %0:USE ALPHA, 1: USE INPUT CLE 
  CLE   = [-0.14 .15 .44 .73 .97 1.16 1.26 1.34 1.11];          %Lift Coeff 
  ETA   = 0; 
  AOLE  = 0; 
ILK     = 0;            %0:INPUT STA X,Y  1:INPUT TAU, RHO, RHO 
ALFA    = [-7.6 -4.5 -1.5 1.5 4.7 8.0 9.7 11.4 16.2];    %ANGLE OF ATTACK 
JA      = length(ALFA); %NUMBER OF ANGLES 
  
foil_name = 'CLARK Y, NACA RPT 460'; 
  
%   Coordinates.  Must have same number on upper surface as lower surface. 
%   For symmetrical foil, give only upper surface (last point 0,0 for 
%   symmetrical foils) 
CC = [1 .992404 .95 .9 .8 .7 .6 .5 .4 .3 .2 .15 .1 .075 .05 .025 .0125... 
    0 .0125 .025 .05 .075 .1 .15 .2 .3 .4 .5 .6 .7 .8 .9 .95 .992404 1]; 
Y  = [.0006    .0027    .0144    .0273    .0515    .0728    .0907... 
    .1043    .1131    .1162    .1126    .1057    .0950    .0873    .0777... 
    .0637    .0532    .0354    .0180    .0136    .0085    .0053... 
    .0033    .0008    -.0005    -.0006    -.0006    -.0006    -.0006... 
    -.0006  -.0006    -.0006    -.0006    -.0006    -.0006]; 
  
[XN, indx] = min(CC); 
YN = Y(indx); 
NX = length(CC); 
  
%Plot input 
figure() 
axis equal; 
hold on; 
plot(CC,Y, 'k.', CC,Y, 'k'); 
legend('Input to Brockett') 
title(foil_name) 
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KT_IN.m 

%   Written by Chris Peterson 
  
%   This file inputs data to be processed by the MATLAB version of  
%   Brockett's Thesis code (Brockett.m).  This file reads input generated 
%   by the Karman-Trefftz foil Conformal Transformation script 
(CnfrmlTrans.m). 
  
IPMIN   = 0;            %0:Report Data, 1: No Data 
IDEN    = 1;            %0:SYMM, 1:NONSYMM 
IPM     = 1;            %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS 
ICL     = 0;            %0:USE ALPHA, 1: USE INPUT CLE 
if ICL == 0             %Viscous calcs require experimental data input 
    AOLE    = 0;        %Experimental angle of zero lift  
    ETA     = 0;        %Lift-curve slope coefficient  
elseif ICL ==1 
    CLE     = 0;        %Experimental lift coefficient 
    AOLE    = 0;        %AOLE and ETA must be set to 0 if ICL = 1    
    ETA     = 0;        %AOLE and ETA must be set to 0 if ICL = 1  
end 
ILK       = 0;          %0:INPUT STA X,Y  1:INPUT TAU, RHO, RHO 
foil_name = 'Karman-Trefftz'; 
  
load('x_output.mat', '-mat');%Opens data generated by CnfrmlTrans.m 
  
CC      = x_spl;        %Read in x data from K-T foil ordinates 
Y       = y_spl;        %Read in y data from K-T foil ordinates 
[XN, xn_ind] = min(CC); %Find nose x location and index 
NX      = length(CC);   %NUMBER OF STATIONS 
YN      = Y(xn_ind);    %Specifies nose y location 
ALFA    = alpha_deg;    %ANGLE OF ATTACK (FOR DESIRED PRESSURE DIST) 
JA      = length(ALFA); %NUMBER OF ANGLES 
  
%Plot input 
figure() 
axis equal; 
hold on; 
plot(CC,Y, 'k.', CC,Y, 'k'); 
legend('Input to Brockett') 
title(foil_name) 
  
%Compare to Karman-Trefftz foil? 1-yes, 0-no 
comp2kt     = 1;    %Opens previous trefftz plot and plots new data 
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Brock_IN.m 

%   Written by Chris Peterson 
  
%   This file inputs data to be processed by MATLAB version of  
%   Brockett's Thesis program.  The data is from Brockett's published 
%   minimum pressure envelopes for NACA foils (DTMB Report 1780, pg 14). 
  
IPMIN   = 0;            %0:Report Data, 1: No Data 
IDEN    = 1;            %0:SYMM, 1:NONSYMM 
IPM     = 1;            %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS 
ICL     = 1;            %0:USE ALPHA, 1: USE INPUT CLE 
  ETA   = 0; 
  AOLE  = 0; 
ILK     = 1;            %0:INPUT STA X,Y  1:INPUT TAU, RHO, RHO 
ALFA    = 0;            %ANGLE OF ATTACK 
JA      = length(ALFA); %NUMBER OF ANGLES 
     
foil_name = 'NACA 66 (Mod), a=0.8'; 
  
TAO =   0.12; 
F   =   0.06; 
RHO =   .448; 
AT_in  =   fliplr([0 0.007596 0.030154 0.066987 .116978 .178606 .25 .32899 
.413176... 
    .5 .586824 .671010 .75 .821394 .883022 .933013 .969846 .992404 1]); 
YT_in  =   fliplr([0 .0817 .1608 .2388 .3135 .3807 .4363 .4760 .4972 .4962 
.4712...  
    .4247 .3612 .2872 .2108 .1402 .0830 .0462 .0333]); 
YC_in  =   fliplr([0 .06006 .18381 .33684 .49874 .65407 .79051 .89831 .96994 
1 ... 
    .98503 .92306 .81212 .63884 .42227 .23423 .09982 .02365 0]); 
YCP_in =   fliplr([7.1485 6.6001 4.7712 3.6751 2.8681 2.2096 1.6350 1.1071 
.6001 ... 
    .0914 -.4448 -1.0483 -1.8132 -3.1892 -3.7243 -3.7425 -3.5148 -3.2028... 
    -3.0025]); 
  
NX  = length(AT_in); 
CLE = 2*pi*(1-0.83*TAO)*(deg2rad(ALFA) + 2.05*F);          %Lift Coeff 
  
nose_rad = RHO*TAO^2; 
  
 
comp2kt = 0; 
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Appendix E:   Brockett.m Sample Output 
                         PROFILE CONSTANTS 
         X    Y                C             D      E    DY/DPHI 
    1.000000     0.000000     0.000000     0.000000     0.000000     0.001998 
    0.992404     0.000680     0.890691     0.026481    -0.069870     0.007287 
    0.969846     0.002700     0.933471     0.096858    -0.181740     0.015520 
    0.933013     0.005990     0.958680     0.186467    -0.307426     0.022185 
    0.883022     0.010460     0.978938     0.279256    -0.427845     0.028863 
    0.821394     0.015970     0.997232     0.380868    -0.545076     0.034145 
    0.750000     0.022360     1.016276     0.490314    -0.655257     0.038834 
    0.671010     0.029345     1.038498     0.615677    -0.761927     0.040635 
    0.586824     0.036360     1.062833     0.761407    -0.865047     0.039076 
    0.500000     0.042670     1.088804     0.937296    -0.967603     0.032369 
    0.413176     0.047445     1.114413     1.150647    -1.070719     0.021690 
    0.328990     0.049850     1.139587     1.422610    -1.182065     0.004568 
    0.250000     0.048850     1.147911     1.771430    -1.308325    -0.015548 
    0.178606     0.044750     1.144379     2.222439    -1.465799    -0.030556 
    0.116978     0.038405     1.137954     2.859395    -1.696827    -0.041660 
    0.066987     0.030340     1.125485     3.863976    -2.087954    -0.050476 
    0.030154     0.020930     1.087640     5.708723    -2.863493    -0.056743 
    0.007596     0.010710     0.945091     9.983659    -4.773447    -0.060158 
    0.000000     0.000000     0.000000    17.144979    -8.056392    -0.062063 
    0.007596    -0.010710    -0.945091     9.983659    -4.773447    -0.060158 
    0.030154    -0.020930    -1.087640     5.708723    -2.863493    -0.056743 
    0.066987    -0.030340    -1.125485     3.863976    -2.087954    -0.050476 
    0.116978    -0.038405    -1.137954     2.859395    -1.696827    -0.041660 
    0.178606    -0.044750    -1.144379     2.222439    -1.465799    -0.030556 
    0.250000    -0.048850    -1.147911     1.771430    -1.308325    -0.015548 
    0.328990    -0.049850    -1.139587     1.422610    -1.182065     0.004568 
    0.413176    -0.047445    -1.114413     1.150647    -1.070719     0.021690 
    0.500000    -0.042670    -1.088804     0.937296    -0.967603     0.032369 
    0.586824    -0.036360    -1.062833     0.761407    -0.865047     0.039076 
    0.671010    -0.029345    -1.038498     0.615677    -0.761927     0.040635 
    0.750000    -0.022360    -1.016276     0.490314    -0.655257     0.038834 
    0.821394    -0.015970    -0.997232     0.380868    -0.545076     0.034145 
    0.883022    -0.010460    -0.978938     0.279256    -0.427845     0.028863 
    0.933013    -0.005990    -0.958680     0.186467    -0.307426     0.022185 
    0.969846    -0.002700    -0.933471     0.096858    -0.181740     0.015520 
    0.992404    -0.000680    -0.890691     0.026481    -0.069870     0.007287 
    1.000000     0.000000     0.000000     0.000000     0.000000     0.001998 
 
 
 NON-DIMENSIONAL VELOCITY, V=(C*cos(ALFA)+D*sin(ALFA))*(1-/+DELTA*sqrt(X-X^2))+DELTA*E ) 
 DCL/D(ALPHA)/2PI (THEORY)=  1.003996 
 ANGLE,CL=0 (THEORY) =  0.000000 DEG  
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                         PROFILE CONSTANTS 
 
                     INTERMEDIATE VALUES 
                           UPPER SURFACE 
         X  C      D           E          DY/DPHI 
    0.000076    0.161276   16.982900   -7.981671   -0.062038 
    0.000305    0.313757   16.522600   -7.769532   -0.061966 
    0.000685    0.450819   15.831154   -7.451069   -0.061848 
    0.001218    0.569054   14.992649   -7.065239   -0.061689 
    0.001903    0.667997   14.085384   -6.648289   -0.061492 
    0.002739    0.749135   13.169455   -6.228004   -0.061265 
    0.003727    0.814891   12.284473   -5.822656   -0.061012 
    0.004866    0.867893   11.452912   -5.442571   -0.060740 
    0.006156    0.910580   10.685001   -5.092396   -0.060456 
    0.011852    1.005922    8.501872   -4.103034   -0.059397 
    0.017037    1.043992    7.345885   -3.584794   -0.058606 
    0.023142    1.069452    6.436098   -3.181521   -0.057745 
 
 
                           LOWER SURFACE 
         X  C      D           E          DY/DPHI 
    0.000076   -0.161276   16.982900   -7.981671   -0.062038 
    0.000305   -0.313757   16.522600   -7.769532   -0.061966 
    0.000685   -0.450819   15.831154   -7.451069   -0.061848 
    0.001218   -0.569054   14.992649   -7.065239   -0.061689 
    0.001903   -0.667997   14.085384   -6.648289   -0.061492 
    0.002739   -0.749135   13.169455   -6.228004   -0.061265 
    0.003727   -0.814891   12.284473   -5.822656   -0.061012 
    0.004866   -0.867893   11.452912   -5.442571   -0.060740 
    0.006156   -0.910580   10.685001   -5.092396   -0.060456 
    0.011852   -1.005922    8.501872   -4.103034   -0.059397 
    0.017037   -1.043992    7.345885   -3.584794   -0.058606 
    0.023142   -1.069452    6.436098   -3.181521   -0.057745 
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                       PRESSURE DISTRIBUTION 
                        SYMMETRICAL PROFILE 
 
    ALFA        CL          DELTA      sin(ALFA)  LIFT SLOPE   ALFA,CL=0 
    4.090000    0.430129    0.003146    0.071323    0.959000    0.000000 
 
 
      X           POTNL VELOC      VISC INCRM      VISC VELOC        POTNL P/Q          VISC P/Q 
    1.000000 0.000000     0.000000   0.000000    1.000000  1.000000 
    0.992404    0.890311   -0.000269     0.890042       0.207346     0.207825 
    0.969846     0.938002   -0.000877     0.937124       0.120153      0.121798 
    0.933013     0.969537   -0.001532     0.968005       0.059997     0.062965 
    0.883022     0.996363   -0.002161     0.994201       0.007261     0.011564 
    0.821394     1.021857   -0.002763     1.019094    -0.044191    -0.038552 
    0.750000     1.048659   -0.003318     1.045341    -0.099685    -0.092737 
    0.671010     1.079765   -0.003835     1.075931    -0.165893    -0.157627 
    0.586824     1.114433   -0.004305     1.110128    -0.241960    -0.232384 
    0.500000     1.152882    -0.004731     1.148151    -0.329138    -0.318250 
    0.413176     1.193643    -0.005110     1.188533    -0.424784    -0.412611 
    0.328990     1.238150    -0.005460     1.232689    -0.533015    -0.519523 
    0.250000     1.271331    -0.005780     1.265552    -0.616284    -0.601622 
    0.178606     1.299976   -0.006129     1.293847    -0.689939    -0.674040 
    0.116978     1.338998    -0.006662     1.332336    -0.792914    -0.775119 
    0.066987     1.398210    -0.007654     1.390556    -0.954992    -0.933647 
    0.030154     1.492035    -0.009812     1.482224    -1.226170    -1.196987 
    0.007596     1.654753    -0.015487     1.639265    -1.738206    -1.687191 
    0.000000     1.222837    -0.025387     1.197451    -0.495331    -0.433888 
    0.007596     0.230616      0.015110     0.245726      0.946816      0.939619 
    0.030154     0.677705      0.009398     0.687103     0.540716      0.527890 
    0.066987    0.847027      0.007264     0.854291     0.282546      0.270187 
    0.116978   0.931114      0.006319     0.937434      0.133026      0.121218 
    0.178606    0.982953      0.005850     0.988803      0.033804      0.022270 
    0.250000     1.018643      0.005575     1.024218    -0.037633    -0.049022 
    0.328990     1.035219      0.005338     1.040558    -0.071679    -0.082760 
    0.413176     1.029507      0.005071     1.034578    -0.059885    -0.070351 
    0.500000     1.019180      0.004772     1.023952    -0.038728    -0.048479 
    0.586824    1.005820      0.004421     1.010241    -0.011675    -0.020588 
    0.671010     0.991941      0.004020     0.995961      0.016053      0.008062 
    0.750000     0.978717      0.003565     0.982282      0.042113      0.035122 
    0.821394     0.967527      0.003062     0.970590      0.063891      0.057956 
    0.883022    0.956528      0.002504     0.959032      0.085055      0.080258 
    0.933013     0.942939      0.001906     0.944844      0.110867      0.107269 
    0.969846     0.924185      0.001268     0.925453      0.145882      0.143537 
    0.992404    0.886534      0.000656     0.887190      0.214058      0.212894 
    1.000000     0.000000      0.000000     0.000000      1.000000      1.000000 
 
INTEGRATED CN=  0.425593 
INTEGRATED CC= -0.030299 
INTEGRATED CM(X)=  0.002425, CW ABT X=0.25 
INTEGRATED CM(Y)= -0.001200, CW ABT Y=0 
 
 



 71 

                       PRESSURE DISTRIBUTION 
 
    ALFA        CL          DELTA      sin(ALFA)  LIFT SLOPE   ALFA,CL=0 
    4.090000    0.430129    0.003146    0.071323    0.959000    0.000000 
 
                        INTERMEDIATE VALUES 
 
                          UPPER SURFACE  
      X              POTNL VELOC     VISC INCRM     VISC VELOC      POTNL P/Q           VISC P/Q    
    0.000076     1.372143    -0.025188     1.346954    -0.882775    -0.814286 
    0.000305     1.491405    -0.024563     1.466842    -1.224289    -1.151624 
    0.000685     1.578802    -0.023607     1.555195    -1.492615    -1.418630 
    0.001218     1.636931    -0.022440     1.614491    -1.679543    -1.606580 
    0.001903     1.670913    -0.021175     1.649737    -1.791949    -1.721633 
    0.002739     1.686517    -0.019899     1.666619    -1.844340    -1.777618 
    0.003727     1.688985    -0.018667     1.670318    -1.852671    -1.789962 
    0.004866     1.682543    -0.017513     1.665029    -1.830950    -1.772323 
    0.006156     1.670351    -0.016452     1.653899    -1.790074    -1.735383 
    0.011852     1.609742    -0.013469     1.596273    -1.591269    -1.548088 
    0.017037     1.565266    -0.011923     1.553343    -1.450057    -1.412873 
    0.023142     1.525772    -0.010735     1.515037    -1.327982    -1.295338 
 
                           LOWER SURFACE 
      X             POTNL VELOC      VISC INCRM     VISC VELOC      POTNL P/Q          VISC P/Q 
    0.000076     1.050412    -0.025123     1.025289            -0.103366             -0.051217 
    0.000305     0.865489    -0.024437     0.841053     0.250928     0.292630 
    0.000685     0.679460    -0.023425     0.656035     0.538334     0.569618 
    0.001218     0.501721    -0.022211     0.479510     0.748276     0.770070 
    0.001903     0.338321    -0.020906     0.317415     0.885539     0.899248 
    0.002739     0.192062    -0.019597     0.172465     0.963112     0.970256 
    0.003727     0.063355    -0.018340     0.045015     0.995986     0.997974 
    0.004866     0.048822     0.017165     0.065988     0.997616     0.995646 
    0.006156     0.146171     0.016087     0.162258     0.978634     0.973672 
    0.011852     0.396978     0.013070     0.410048     0.842409     0.831861 
    0.017037     0.517400     0.011514     0.528914     0.732298     0.720250 
    0.023142     0.607684     0.010321     0.618006     0.630720     0.618069 
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Appendix F:   Modified XFOIL User Guide. 
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Appendix G:   Instruction for compiling modified XFOIL Code 
This appendix is intended to provide basic instructions on how to obtain and 

compile the source code for the modified version of XFOIL used for this project.  

The original source code for XFOIL as released by Mark Drela can be obtained at 

http://web.mit.edu/drela/Public/web/xfoil/.  Version 6.96 was used for this project.  In 

order to compile the official release version of XFOIL, it is recommended to follow 

the instructions that are contained in the README that is included with the *.tar files 

containing the source code.  Since this project was conducted on a Win32 based 

PC, the following recommendations are provided based on personal experience 

while trying to compile the source code in Windows XP 

(1)  Download and install Cygwin, available at http://www.cygwin.com/.   Cygwin is a 

Linux-like environment for Windows. It consists of two parts:  

•  A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing 

substantial Linux API functionality.  

•  A collection of tools which provide Linux look and feel.  

Cygwin allows native Linux applications to be run on Windows machines, if they are 

rebuilt from their original source code using Cygwin.  Specifically, the original 

source code for XFOIL made use of X11 window tools that are not normally 

available in Windows (Unix like plotting).  The use of Cygwin was a fix to this.   

Once running the Cygwin setup program, and under the “Select Packages Screen”, 

complete the following actions prior to clicking the “Next” button: 

-Under the “Devel” pull-down menu, select the “gcc-g77: Fortran Package” for 
installation by click the “Skip” item on the left column.  This action selects the 
current version to include in the installation.  This action will also select add-on 
packages required for installation. 

-Under the “Devel” pull-down menu, select the “make: The GNU version of the 
‘make’ utility” for installation by click the “Skip” item on the left column.   
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-Under the “X11” pull-down menu, select the “xorg-x11-base: Cygwin/X base” 
package for installation, and the “xorg-x11-devel: Cygwin/X headers and import 
libraries”.  Associated add-ons will also be automatically selected. 

(2)  A basic guide on installation these items can be found at 

http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/cygwin/.  

Although not an official reference, the instructions and guidance provided here were 

found to be useful. 

(3) Download and intall MinGW.  Instructions can be found by following the 

downloand link on the http://www.mingw.org/ web page.  When running the 

installation program, ensure that the seletion box for ‘g77 compilier’ is checked 

under “Select Components to Install:”, and continue with the installation process. 

(5)  Add the following lines to the file “c:\cygwin\etc\bash.bashrc” 

  PATH=/cygdrive/c/mingw/bin:$PATH 
  export PATH 

These statements place the /Mingw/bin ahead of /Cygwin/bin in the path 

statement for the Cygwin environment, ensuring that Mingw executables for 

gcc.exe and g77.exe are used, rather than the Cygwin versions.  This prevents 

an error when XFOIL is run outside of the Cygwin environment, and eliminates the 

error when cygwin1.dll is not present. 

In order to test the above step, start Cywin and type which gcc at the Cygwin $ 

prompt.  The response should be /cygdrive/c/mingw/bin/gcc.  If the 

response is /usr/bin/gcc, then the above steps were not completed properly.  
 

(4)  Download original source code from:  
http://web.mit.edu/drela/Public/web/xfoil/xfoil6.96.zip 

(5)  Unzip xfoil6.96.zip to a working directory (i.e. C:\XFOIL\). 
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(6)  Replace the following files in the C:\XFOIL\SRC\ directory with the files 

modified by the author as part of this project:  

 
 blplot.f 

 dplot.f 

 gui.f 

 modify.f 

 plutil.f 

 pntops.f 

 polplt.f 

 xfoil.f 

 XFOIL.INC 

 xgdes.f 

 xgeom.f 

 xmdes.f 

 xoper.f 

 xplots.f 

 xqdes.f 

 xtcam.f 

(7) Place Makefile in the C:\XFOIL\SRC\ directory.  Details of this file are 

provided below. 

Makefile 

#********************************************************* 
# Makefile for XFOIL V6.93 programs 
# H.Youngren 4/24/01 
# M.Drela 
#********************************************************* 
# Modified by Chris Peterson to generate modified version 
# of XFOIL that removes menus and plots, and executes from 
# command prompt. 
#********************************************************* 
 
 
SHELL = sh 
#BINDIR = $(HOME)/bin/ 
BINDIR = . 
 
PROGS = xfoil 
# pplot pxplot 
 
SRC = ../src 
OSRC = ../osrc 
 
XFOILOBJ = xfoil.o xpanel.o xoper.o xtcam.o xgdes.o xqdes.o xmdes.o \ 
xsolve.o xbl.o xblsys.o xpol.o xplots.o pntops.o xgeom.o xutils.o modify.o \ 
blplot.o polplt.o aread.o naca.o spline.o plutil.o iopol.o gui.o sort.o \ 
dplot.o profil.o 
 
#PPLOTOBJ = pplot.o polplt.o sort.o iopol.o 
#PXPLOTOBJ = pxplot.o plutil.o gui.o 
 
XUTILOBJ  = userio.o 
 
FTNLIB =  
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##---------------------------------------------------- 
OSOBJ = frplot0.o 
 
# Use this for individual TS-wave frequency plotting 
# OSOBJ = frplot.o ntcalc.o osmap.o getosfile.o 
 
##---------------------------------------------------- 
# PLTOBJ = ../plotlib/libPlt.a  
 
# Use this if you have a copy of the plotlib as a system library 
# PLTOBJ = -lPlt  
 
# The extra location arg here is for Linux which places X libs in /usr/X11R6 
# PLTLIB = -L/usr/X11R6/lib -lX11 
 
###================================================ 
###  Default compilers and flags 
###  FFLOPT used for xsolve.f 
FC = g77 
FFLAGS  = -O 
FFLOPT  = -O 
INSTALLCMD = install -s 
 
CC = gcc 
CFLAGS = -O -DUNDERSCORE 
 
##-------------------------- 
 
# Uncomment flags for desired machine... 
 
##-------------------------- 
### DEC Alpha with OSF and DEC f77/f90 compiler 
#FC = f77 
#FFLAGS = -fast -O4 -tune host 
#FFLOPT = -fast -O4 -tune host 
#FFLOPT = -fast -O5 -tune host -unroll 3 
# Debug flags 
#FFLAGS = -O0 -g 
#FFLOPT = -fast -O4 -tune host 
##-------------------------- 
### SGI setup 
#FC = f77 
#FFLAGS = -O2 -static 
#FFLOPT = -O2 -static 
##-------------------------- 
##  Uncomment for RS/6000 
#FFLAGS = -O -qextname 
#FFLOPT = -O -qextname 
##-------------------------- 
##  Uncomment for HP-9000 
#FFLAGS = -O +ppu 
#FFLOPT = -O +ppu 
#FTNLIB = -U77 
##-------------------------- 
### Absoft Linux f77 
#FC = f77 
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#FFLAGS = -O -f -s -W -B108 -N34 
#FFLOPT = -O -f -s -W -B108 -N34 
##-------------------------- 
### f2c/gcc compiler driver  
#FC = fort77 
#FFLAGS = -O2 -fomit-frame-pointer 
#FFLOPT = -O2 -fomit-frame-pointer 
##-------------------------- 
### GNU g77 
#FC = g77 
#FFLAGS = -O3 -fomit-frame-pointer 
#FFLOPT = -O3 -fomit-frame-pointer 
# Debug flags (symbols, array bounds) 
#FC = g77 
#FFLAGS = -g -O0 -C 
##-------------------------- 
### Intel Fortran Compiler 
#FC = ifort 
#FFLAGS = -O  
#FFLOPT = -O 
#FTNLIB = -Vaxlib /usr/lib/C-ctype.o /usr/lib/C_name.o /usr/lib/ctype-info.o 
#FTNLIB = -Vaxlib 
#FTNLIB = -i_dynamic 
 
##-------------------------- 
### Double precision option 
#FFLAGS = -O -r8  
#FFLOPT = -O -r8  
#PLTOBJ = ../plotlib/libPltDP.a  
 
 
all:  $(PROGS) 
 
install:  
 $(INSTALLCMD) $(PROGS) $(BINDIR) 
 
clean: 
 -/bin/rm $(PROGS) 
 -/bin/rm $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PPLOTOBJ) $(PXPLOTOBJ) 
# -/bin/rm *.o 
 
 
 
xfoil: $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) 
 $(FC) -o xfoil $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PLTOBJ) $(PLTLIB) 
$(FTNLIB) 
 
#pxplot: $(PXPLOTOBJ) $(XUTILOBJ) 
# $(FC) -o pxplot $(PXPLOTOBJ) $(XUTILOBJ) $(PLTOBJ) $(PLTLIB) $(FTNLIB) 
 
#pplot: $(PPLOTOBJ) $(XUTILOBJ) 
# $(FC) -o pplot $(PPLOTOBJ) $(XUTILOBJ)  $(PLTOBJ) $(PLTLIB) $(FTNLIB) 
 
 
xfoil.o: $(SRC)/xfoil.f  $(SRC)/XFOIL.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xfoil.f 
xpanel.o: $(SRC)/xpanel.f  $(SRC)/XFOIL.INC 
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 $(FC) -c $(FFLOPT)  $(SRC)/xpanel.f 
xoper.o: $(SRC)/xoper.f  $(SRC)/XFOIL.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xoper.f 
xsolve.o: $(SRC)/xsolve.f  $(SRC)/XFOIL.INC 
 $(FC) -c $(FFLOPT)  $(SRC)/xsolve.f 
dplot.o: $(SRC)/dplot.f  $(SRC)/XFOIL.INC 
 $(FC) -c $(FFLOPT)  $(SRC)/dplot.f 
xtcam.o: $(SRC)/xtcam.f  $(SRC)/XFOIL.INC $(SRC)/XDES.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xtcam.f 
xgdes.o: $(SRC)/xgdes.f  $(SRC)/XFOIL.INC $(SRC)/XDES.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xgdes.f 
xqdes.o: $(SRC)/xqdes.f  $(SRC)/XFOIL.INC $(SRC)/XDES.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xqdes.f 
xmdes.o: $(SRC)/xmdes.f  $(SRC)/XFOIL.INC $(SRC)/XDES.INC $(SRC)/CIRCLE.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xmdes.f 
xbl.o:   $(SRC)/xbl.f    $(SRC)/XFOIL.INC $(SRC)/XBL.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xbl.f 
xblsys.o: $(SRC)/xblsys.f                  $(SRC)/XBL.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xblsys.f 
xplots.o: $(SRC)/xplots.f $(SRC)/XFOIL.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xplots.f 
pntops.o: $(SRC)/pntops.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/pntops.f 
blplot.o: $(SRC)/blplot.f $(SRC)/XFOIL.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/blplot.f 
xpol.o: $(SRC)/xpol.f     $(SRC)/XFOIL.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/xpol.f 
xgeom.o: $(SRC)/xgeom.f  
 $(FC) -c $(FFLAGS)  $(SRC)/xgeom.f 
xutils.o: $(SRC)/xutils.f  
 $(FC) -c $(FFLAGS)  $(SRC)/xutils.f 
modify.o: $(SRC)/modify.f  
 $(FC) -c $(FFLAGS)  $(SRC)/modify.f 
aread.o: $(SRC)/aread.f  
 $(FC) -c $(FFLAGS)  $(SRC)/aread.f 
naca.o: $(SRC)/naca.f  
 $(FC) -c $(FFLAGS)  $(SRC)/naca.f 
plutil.o: $(SRC)/plutil.f  
 $(FC) -c $(FFLAGS)  $(SRC)/plutil.f 
userio.o: $(SRC)/userio.f  
 $(FC) -c $(FFLAGS)  $(SRC)/userio.f 
gui.o: $(SRC)/gui.f  
 $(FC) -c $(FFLAGS)  $(SRC)/gui.f 
spline.o: $(SRC)/spline.f  
 $(FC) -c $(FFLAGS)  $(SRC)/spline.f 
sort.o: $(SRC)/sort.f 
 $(FC) -c $(FFLAGS)  $(SRC)/sort.f 
profil.o: $(SRC)/profil.f 
 $(FC) -c $(FFLAGS)  $(SRC)/profil.f 
 
polplt.o: $(SRC)/polplt.f $(SRC)/PINDEX.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/polplt.f 
iopol.o: $(SRC)/iopol.f $(SRC)/PINDEX.INC 
 $(FC) -c $(FFLAGS)  $(SRC)/iopol.f 
 
#pplot.o:  $(SRC)/pplot.f  $(SRC)/PPLOT.INC 
# $(FC) -c $(FFLAGS)  $(SRC)/pplot.f 
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#pxplot.o: $(SRC)/pxplot.f $(SRC)/PXPLOT.INC 
# $(FC) -c $(FFLAGS)  $(SRC)/pxplot.f 
 
 
frplot0.o: $(SRC)/frplot0.f 
 $(FC) -c $(FFLAGS)  $(SRC)/frplot0.f 
frplot.o: $(SRC)/frplot.f 
 $(FC) -c $(FFLAGS)  $(SRC)/frplot.f 
#ntcalc.o: $(SRC)/ntcalc.f 
# $(FC) -c $(FFLAGS)  $(SRC)/ntcalc.f 
# 
#osmap.o: $(OSRC)/osmap.f 
# $(FC) -c $(FFLAGS)  $(OSRC)/osmap.f 
# 
#getosfile.o: $(OSRC)/getosfile.c 
# $(CC) -c $(CFLAGS)  $(OSRC)/getosfile.c 
 

(8)  Start Cygwin, and navigate to the location of the XFOIL source code, with 

appropriate files replaced by typing “cd ../../cygdrive/c/xfoil/src” or to 

the directory as appropriate.  

(9)  At the Cygwin prompt, type “make”.  The modified executable used for the work 

conducted in this thesis should compile.  The xfoil.exe executable will be built 

and located in the same directory above in step (8).  xfoil.exe may now be 

relocated as necessary and place in the appropriate directory for MATLAB 

execution. 

(10)  Future modifications may be made to the source code files (*.f) in order to alter 

the program as further desired.  If the source code files are altered, repeat steps (8) 

and (9) to generate a new executable file. 
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Appendix H:   MATLAB Files for Calculation of Minimum 
Pressure Envelopes 

XBucket.m 

%Code by Chris Peterson. 
%Code intended to produce minimum pressure envelopes using XFOIL to 
%calculate minimum pressure for foil geometry.  Code can either use NACA 4- 
%or 5-digit airfoils built into XFOIL, or may read in properly formatted 
%thickness and camber distributions from text files. 
  
clc; clear all; close all; 
  
foil_type = 'LOAD';         %Either 'LOAD', or 'NACA' for 4 or 5 digit 
         
if foil_type == 'LOAD'      %Filenames thickness & camber, and data file 
    foil_name   = 'foildata';     
    load_mean   = 'Brock08act.txt';  
    load_thck   = 'Brock66act.txt';  
elseif foil_type == 'NACA' 
    foil_name = 'FOUR';     %Or 'FIVE' 
    fo_loc = 0.4;           %0.X for 4-digt, or 0.05*k for 5-digit (k=1-5) 
end 
  
xdir        = '.\xfoil\';   %Specify XFOIL.EXE executable location 
panels      = 175;          %Sets number of panels if resetting in XFOIL 
Alpha_lim   = [-5 8];       %Angle of attack range 
Alpha_delta = 0.1;          %Angle of attack increment 
  
foc_rng     = [0.00 0.06];  %Camber ratio range (Must be <0.1 for 4-digit 
NACA) 
foc_step    = 0.01;         %Camber ratio increment 
  
toc_rng     = [0.02 0.2];    %Thicness ratio range 
toc_step    = 0.02;         %Thickness ratio increment 
  
visc_tog    = 0;            %1-yes(viscous), 0-no(Inviscid) 
iter_lim    = 500;          %XFOIL viscous calc iteration limit 
Re_no       = 1e7;          %Reynolds number for visc calcs 
  
if visc_tog == 1            %Add visc functionality to XFOIL command line 
    visc_cmd = ['OPER ITER ', num2str(iter_lim),' ',... 
        'OPER VISC ', num2str(Re_no), ' ']; 
elseif visc_tog == 0 
    visc_cmd = ''; 
end 
  
%Determine alphas to calculate 
A_rng       = Alpha_lim(1):Alpha_delta:Alpha_lim(2); 
  
%Start of main calculation loops 
for fo_c = foc_rng(1):foc_step:foc_rng(2)        %Calculate over range of f/c 
    k = int8((fo_c+foc_step)/foc_step);      %k is index for data array below 
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    for to_c = toc_rng(1):toc_step:toc_rng(2)    %Calculate over range of t/c 
        j = int8((to_c-toc_rng(1)+toc_step)/toc_step); 
         
        %IF below determines if XFOIL database will be used, and creates  
        %foil if tabulated data is to be read in 
        if strcmp(foil_type, 'NACA') 
            if strcmp(foil_name, 'FOUR') 
                name = get4_nm(fo_loc, fo_c, to_c); 
            elseif strcmp(foil_name, 'FIVE') 
                name = get5_nm(fo_loc, to_c); 
            end 
        elseif strcmp(foil_type, 'LOAD')    %Makes foil if req'd 
            makefoil(to_c, fo_c, load_mean, load_thck, foil_name); 
            name = foil_name; 
        end 
        
        %CMD generates call to run the XFOIL executable to calc CPmin. 
        cmd = [xdir, 'xfoil.exe ',... 
            'NORM ',... 
            foil_type, ' ', name, ' ',... 
            'GDES TSET ', num2str(to_c), ' ',num2str(fo_c), ' ',...    
            'GDES X ',... 
             visc_cmd, ... 
            'OPER ALFL ', num2str(Alpha_lim(1)),' ',... 
            num2str(Alpha_delta),' ', num2str(Alpha_lim(2)), ' ']; 
 
        system(cmd);                        %Calls XFOIL 
         %Reads in -Cpmin, and x-location of -Cpmin 
        fid = fopen('CPMINARRAY.txt'); 
        clear datain; 
        if visc_tog == 0; 
            datain = textscan(fid, '%f64  %f64', 'headerlines', 1); 
        elseif visc_tog == 1; 
            datain = textscan(fid, '%f64  %f64  %f64  %f64', ... 
                'headerlines', 1); 
        end 
        fclose(fid); 
        if visc_tog == 1; 
            cpmni(j,:,k)    = datain{1,1}; 
            xcpmni(j,:,k)   = datain{1,2}; 
            cpmnv(j,:,k)    = datain{1,3}; 
            xcpmnv(j,:,k)   = datain{1,4}; 
        elseif visc_tog == 0 
            cpmni(j,:,k)    = datain{1,1};  %Data array for minimum Cp 
            xcpmini(j,:,k)  = datain{1,2};  %Data array for location of CPmin 
        end 
    end 
     
%Generates Bucket diagrams, new plot for each Fo/C     
    figure(); 
    hold on; grid on; 
    cmap = colormap(hsv(toc_rng(2)/toc_step+1)); %Generates color distibution 
    set(gca,'ColorOrder',cmap); 
    plot(-cpmni(:,:,k), A_rng(1:length(cpmni))); %Plots Alpha vs. -Cpmin 
    xlim([0 3]); 
    if fo_c > 0 
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        ylim(Alpha_lim);                         %Set plot X/Y limits 
    else 
        ylim([0 8]); 
    end 
    xlabel('-CP_m_i_n'); ylabel('Angle of Attack (\alpha)'); 
    if foil_type == 'NACA' 
        title_name = [foil_type, ' ', foil_name]; 
    elseif foil_type == 'LOAD' 
        title_name = ['Meanline: ', load_mean, '.  Thickness: ', load_thck]; 
    else 
        title_name = 'UNKNOWN TYPE'; 
    end 
    title({['INVISCID Brockett Diagram',10, title_name, 10,... 
        ' Fo/c = ', num2str(fo_c), '   ', '\Delta\alpha = ', 
num2str(Alpha_delta)]}); 
    tau = toc_rng(1):toc_step:toc_rng(2);           %Used for legend 
    leg_st = cell(1,length(tau));                   %Initializes cells 
    for i = 1:length(tau);                          %Set vales to cells 
        leg_st(i) = {num2str(tau(i))}; 
    end 
    legend(leg_st, 'Location', 'SouthEast') 
     
    if visc_tog == 1 
        figure(); 
        hold on; grid on; 
        cmap = colormap(hsv(toc_rng(2)/toc_step+1)); 
    %Generates color distibution 
        set(gca,'ColorOrder',cmap); 
        plot(-cpmnv(:,:,k), A_rng(1:length(cpmnv)));                       
    %Plots Alpha vs. -Cpmin 
        xlim([0 3]);     
        ylim(Alpha_lim);                %Set plot X/Y limits 
        xlabel('-CP_m_i_n'); ylabel('Angle of Attack (\alpha)'); 
        if foil_type == 'NACA' 
            title_name = [foil_type, ' ', foil_name]; 
        elseif foil_type == 'LOAD' 
            title_name = ['Meanline: ', load_mean, '.  Thickness: ', 
load_thck]; 
        else 
            title_name = 'UNKNOWN TYPE'; 
        end 
        title({['VISCOUS Brockett Diagram',10, title_name,10,... 
            ' Fo/c = ', num2str(fo_c), '    \Delta\alpha = ', 
num2str(Alpha_delta)]}); 
        tau = toc_rng(1):toc_step:toc_rng(2);           %Used for legend 
        leg_st = cell(1,length(tau));                   %Initializes cells 
        for i = 1:length(tau);                          %Set vales to cells 
            leg_st(i) = {num2str(tau(i))}; 
        end 
        legend(leg_st, 'Location', 'SouthEast') 
    end 
end 
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makefoil.m 

%Code by Chris Peterson.  Code will read in specified camber and thickness 
%   distributions and generate foil geometry file for XFOIL.  Thickness and 
%   camber are scaled to t_set and f_set. 
%   Coordinates start at TE, go forward CCW along upper surfact to LE, 
%   and back to TE along lower surface. 
  
function [] = makefoil(t_set, f_set, mean_type, thick_type, save_as) 
  
%     clc; clear all; close all; 
%     t_set     = 0.1; 
%     f_set         = 0.08; 
%     mean_type   = 'NACAa=08(Brockett).txt'; 
%     thick_type  = 'NACA66(Brockett).txt'; 
%       save_as     = 'brockett'; 
  
make_plot       = 'no'; %Generate plot toggle ('yes' or 'no') 
N_parab_def     = 35;   %Number of points to make nose parabola. Fails at 
numbers < ~20 
N_parab_eval    = 11;   %Number of points to include at the nose in data 
export; 
N_surf_pts      = 80;   %Number of points along body to TE (not including LE) 
                        %N_parab_pts + N_surf_pts must be < 150 
fract           = 1-2/N_parab_eval;  %Fraction of parabola to use from LE to 
0.005. 
                        %Max parabola point must be less than 0.005 
                        %to prevent sharp cornder at 0.005. 
conc_fact       = 2;    %Power for exponential disribution at LE.  This 
                        %concentrates point near tip. 
  
%Get meanline and dy/dx distributions from mean line data base 
[x_f fc_o dydx_o]   = getmeanline(mean_type); 
[x_t tc_o RLE_o]    = getthickdist(thick_type); 
  
%Scale appropriately 
t_set   = t_set/2;              %uses 1/2 thickness 
if max(fc_o) ~= 0 
    f_scale = f_set/max(fc_o); 
elseif max(fc_o) == 0 
    f_scale = 0; 
end 
f_c     = fc_o * f_scale; 
dydx    = dydx_o * f_scale; 
t_scale = t_set/max(tc_o); 
t_c     = tc_o * t_scale; 
RLE     = RLE_o * (t_scale)^2; 
  
%Find points along RLE nose parabola 
x_RLE = fract*0.005*(0:1/(N_parab_def-1):1).^conc_fact; 
t_RLE = sqrt(2*RLE*(x_RLE)); 
  
%Spline parabola and tabulated data for thickness function 
x_locs  = [x_RLE x_t(2:end)];                    %New combined x/c values 



 84 

t_fnct  = csape(x_locs, [1e10 t_RLE t_c(2:end) 1],[1 0]); %1e8 sets init 
slope = ~inf 
%Make x locations for generating data file 
    %Cosine spacing from 0.005 to TE 
x_cos_sp= 0.005 + 0.5*0.995*(1-cos(0:pi/(N_surf_pts-1):pi));   
    %Exponential spacing for nose 
x_eval_LE = fract*0.005*(0:1/(N_parab_eval-1):1).^conc_fact; 
t_eval_LE = sqrt(2*RLE*(x_eval_LE)); 
x_eval_mb = [x_cos_sp];  %Establishes eval points    
t_eval_mb = fnval(t_fnct, x_eval_mb); %Evaluates spline at eval points 
x_eval = [x_eval_LE x_eval_mb]; 
t_eval = [t_eval_LE t_eval_mb]; 
  
%Spline tabulated data for camber at same x/c locations as thickness 
f_fnct  = csape(x_f, f_c); 
f_eval  = fnval(f_fnct, x_eval); 
dydx_eval = fnval(fnder(f_fnct), x_eval); 
                 
%Plotting for unrotated parameters 
if strcmp(make_plot,'yes') 
    figure(); 
    hold on;  
    axis equal;             %Set X:Y to unity 
    title('Camber, Thickness, and LE Graphical Display') 
    xlabel('X/C'); 
    xlim([-0.01 0.25]);     %Set Initial Zoom 
        %Plot thickness 
        fnplt(t_fnct, 'y'); fnplt(f_fnct, 'g') 
        plot(x_t, t_c, 'co'); plot(x_f, f_c, 'ro') 
        plot(x_RLE, t_RLE, 'k.'); 
        %Plot RLE Circle and parabola for viewing on plot 
        plot(RLE - RLE*cos(0:pi/100:pi), RLE*(sin(0:pi/100:pi)), 'b:'); 
        plot((0:1/10000:0.2), sqrt(2*RLE*(0:1/10000:0.2)), 'r:'); 
        %Plot camber 
           
         
    legend('Splined Thickness', 'Splined Camber',... 
        'Tabulated Thickness (Scaled)', 'Tabulated Camber (Scaled)',... 
        'Calcuated Parabola', 'Leading Edge Radius', 'LE Parabola',... 
        'Location', 'southeast') 
end 
  
%Calculate upper and lower surface ordinates  
x_u = x_eval - t_eval.*sin(atan(dydx_eval)); 
y_u = f_eval + t_eval.*cos(atan(dydx_eval)); 
x_l = x_eval + t_eval.*sin(atan(dydx_eval)); 
y_l = f_eval - t_eval.*cos(atan(dydx_eval)); 
  
%Solve for most forward point on foil 
[x_fwd, min_i] = min(x_u); 
y_fwd = y_u(min_i); 
  
%New plot for actual upper and lower surfaces 
if strcmp(make_plot,'yes') 
    figure(); 
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    hold on;  
    axis equal;             %Set X:Y to unity 
    xlim([0 1]);     %Set Initial Zoom 
    plot(x_u, y_u, 'b-', x_u, y_u, 'r.') 
    plot(x_l, y_l, 'b-', x_l, y_l, 'r.'); 
    plot(x_eval, f_eval, 'g-', x_eval, f_eval, 'r.') 
    plot(x_fwd,y_fwd, 'kp') 
end 
  
%Combine coordinates into a single array of points from TE along upper 
%surface around LE back to TE along lower surface 
x_comb = [fliplr(x_u) x_l]; 
y_comb = [fliplr(y_u) y_l]; 
  
%Rotate and scale such that max forward point is at 0,0, and TE is at 0,1. 
%Assumes TE is already at 0,0 (Uses method in Brockett Report) 
shift_ang = atan(y_fwd/(1-x_fwd)); 
%Scaled chord length back to 1 (accounts for portion forward of 0) 
x_scaled = (x_comb-x_fwd)./(1-x_fwd); 
y_scaled = (y_comb-y_fwd)./(1-x_fwd); 
%Rotate so that most forward point is at 0,0 
x_rot = (x_scaled.*cos(shift_ang) - y_scaled.*sin(shift_ang))/... 
           sqrt(1+(y_fwd/(1-x_fwd))^2); 
y_rot = (y_scaled.*cos(shift_ang) + x_scaled.*sin(shift_ang))/... 
           sqrt(1+(y_fwd/(1-x_fwd))^2); 
        
%New plot for final upper and lower surfaces 
if strcmp(make_plot,'yes') 
    figure(); 
    hold on; 
    title('Final Points exported to Data File.'); 
    axis equal;             %Set X:Y to unity 
    xlim([0 1]);     %Set Initial Zoom        
    plot(x_rot, y_rot, x_rot, y_rot, 'r.'); 
    legend('Connect the dots', 'Actual data points'); 
end 
  
%Write to text file for use in XFOIL. 
cmd = ['del ', save_as];        %save_as is file name to be written to 
system(cmd);                    %Delets previous file 
fid = fopen(save_as, 'w'); 
for i = 1:length(x_rot) 
    fprintf(fid, '%10.8f %10.8f\n', x_rot(i), y_rot(i)); 
end 
fclose(fid); 
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getmeanline.m 

%   Code by Chris Peterson 
%   Code developed to read meanline information from data file 'filename'. 
%   Data will be read in from file, and returned to function call.  Data 
%   return is vectors containing x-locations, camber distribution, and 
%   camber line slope values.  Function checks for 999 value specifying 
%   less data points than standard input format. 
  
function [x_loc f_c dy_dx] = getmeanline(filename) 
  
cd('./Meanline'); 
  
input   = dlmread(filename, '\t', 4, 0); 
M       = input'; 
x_loc_in= M(1,:)/100; 
f_c_in  = M(2,:)/100; 
dy_dx_in= M(3,:); 
  
for i=1:length(x_loc_in) 
    if x_loc_in(i) == 9.99 %Checks to see if formatted with less points 
        x_loc   = x_loc_in(1:i-1); 
        f_c     = f_c_in(1:i-1); 
        dy_dx   = dy_dx_in(1:i-1); 
        cd ..; 
        return 
    else 
        x_loc   = x_loc_in; 
        f_c     = f_c_in; 
        dy_dx   = dy_dx_in; 
    end 
end 
         
cd .. 
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getthickdist.m 

%   Code by Chris Peterson 
%   Code developed to read thickness information from data file 'filename'. 
%   Data will be read in from file, and returned to function call.  Data 
%   return is vectors containing x-locations, thickness distribution, and 
%   value of leading edge radius.  Function checks for 999 value specifying 
%   less data points than standard input format. 
  
function [x_loc t_c RLE] = getthickdist(filename) 
  
cd('./Thickness'); 
  
input   = dlmread(filename, '\t', [4 0 29 2]); 
M       = input'; 
x_loc_in= M(1,:)/100; 
t_c_in  = M(2,:)/100; 
fid     = fopen(filename); 
RLE     = textscan(fid, '%s', 'headerlines', 29); 
fclose all; 
RLE     = str2num(RLE{1}{7})/100; 
  
  
for i=1:length(x_loc_in) 
    if x_loc_in(i) == 9.99 %Checks to see if formatted with less points 
        x_loc   = x_loc_in(1:i-1); 
        t_c     = t_c_in(1:i-1); 
        cd ..; 
        return 
    else 
        x_loc   = x_loc_in; 
        t_c     = t_c_in; 
    end 
end 
  
cd ..; 
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get4_nm 

%Code by Chris Peterson.  Code generates a 4 digit string based on location 
%of max camber, camber and thickness to generate NACA 4-digit designation. 
  
function [name] = get4_nm(loc, fo_c, to_c) 
  
if fo_c == 0 
    no1 = '0'; 
    no2 = '0'; 
else 
    no1     = num2str(int8(100*fo_c)); 
    no2     = num2str(int8(10*loc)); 
end 
  
if to_c < 0.1 
    no34    = strcat('0', num2str(int8(100*to_c))); 
else 
    no34 = num2str(int8(100*to_c)); 
end 
  
name = strcat(no1, no2, no34); 

 

get5_nm.m 

%Code by Chris Peterson.  Code generates a 5 digit string based on location 
%of max camber, camber and thickness to generate NACA 4-digit designation. 
  
function [name] = get5_nm(loc, to_c) 
  
no1 = '2';      %Only designs implemented in XFOIL are 210, 220,..., 250 
  
if loc > 0.25 | loc < 0.025        %Will round to nearest 10% 
    error('Improper location for Max Camber.') 
else 
    no23 = num2str(10*int8(2*10*loc)); 
end 
  
if to_c < 0.1 
    no45    = strcat('0', num2str(int8(100*to_c))); 
else 
    no45 = num2str(int8(100*to_c)); 
end 
  
name = strcat(no1, no23, no45); 
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Appendix I:   Meanline and Camber Data File Format 
Meanline and thickness distributions for various NACA foils are available at the 

Public Domain Aeronautical Software website (http://www.pdas.com/avd.htm).  The 

formats of these files were used as input for the meanline and thickness 

distributions, and the MATAB code assumes similar formatting for other tabulated 

offsets.  Examples of meanline and thickness data files are shown below for the 

NACA a=0.3 Meanline, and the NACA 66-008 thickness distributions: 

NACAa=0.8.txt 
NACA Mean Line a=0.3   
(Stations and ordinates given   
in per cent of airfoil chord)   
x y  dy/dx 
0 0  0 
0.5 0.3892  0.6554 
0.75 0.5463  0.6052 
1.25 0.8317  0.5416 
2.5 1.4478  0.454 
5 2.4575  0.3634 
7.5 3.2925  0.3078 
10 4.008  0.2662 
15 5.1721  0.2025 
20 6.052  0.1507 
25 6.6853  0.1028 
30 7.0721  0.0483 
35 7.1754  -0.002 
40 7.0738  -0.0371 
45 6.8162  -0.0649 
50 6.4333  -0.0875 
55 5.9488  -0.1057 
60 5.3828  -0.1201 
65 4.7531  -0.1312 
70 4.0763  -0.139 
75 3.3683  -0.1436 
80 2.6453  -0.145 
85 1.9243  -0.1428 
90 1.2244  -0.1364 
95 0.5698  -0.1243 
100 0  0 
 

NACA66-008.txt 
NACA 66-008   
(Stations and ordinates given   
in per cent of airfoil chord)   
x y  dy/dx 
0 0  0 
0.5 0.6111  0.5674 
0.75 0.7341  0.4353 
1.25 0.9151  0.306 
2.5 1.2183  0.2079 
5 1.6716  0.1605 
7.5 2.0321  0.1303 
10 2.3336  0.1123 
15 2.8245  0.0857 
20 3.2003  0.0658 
25 3.4904  0.0505 
30 3.7091  0.0372 
35 3.8642  0.0253 
40 3.9603  0.0131 
45 3.9984  0.0016 
50 3.9777  -0.0102 
55 3.8945  -0.0236 
60 3.7378  -0.0408 
65 3.4659  -0.0693 
70 3.0593  -0.0915 
75 2.5713  -0.1039 
80 2.0256  -0.1137 
85 1.445  -0.1169 
90 0.8674  -0.1131 
95 0.3378  -0.0952 
100 0  -0.0038 
L.E. radius = 0.389 percent chord
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All values are specified as a percentage of chord length.    Note that for meanline 

data, ‘y’ values represent camber offsets, and dy/dx is camberline slope.  For 

thickness distribution, ‘y’ represents thickness values perpendicular to the meanline, 

and dy/dx is thickness slope.  In addition, leading edge radius must be specified. 

If desired, meanline and thickness for arbitrary foil shapes may be specified using 

the above format, or alternatively, if offsets are available, but not at the locations 

specified above, the following formats may also be used.  These meanline and 

thickness offsets were taken from reference [4] 

Brock08act.txt 
NACA Mean Line a=0.8(modified) 
(Stations and ordinates given   
in per cent of airfoil chord)   
x  y  dy/dx 
0  0  0.71485 
0.7596  0.6006  0.66001 
3.0154  1.8381  0.47712 
6.6987  3.3684  0.36751 
11.6978 4.9874  0.28681 
17.8606 6.5407  0.22096 
25  7.9051  0.1635 
32.899  8.9831  0.11071 
41.3176 9.6994  0.06001 
50  10  0.00914 
58.6824 9.8503  -0.04448 
67.101  9.2306  -0.10483 
75  8.1212  -0.18132 
82.1394 6.3884  -0.31892 
88.3022 4.2227  -0.37243 
93.3013 2.3423  -0.37425 
96.9846 0.9982  -0.35148 
99.2404 0.2365  -0.32028 
100  0  -0.30025 
999  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 
 

Brock66act.txt 
NACA 66 (Mod)-From Brockett   
(Stations and ordinates given   
in per cent of airfoil chord)   
x  y  dydx 
0  0  0 
0.7596  0.817  0 
3.0154  1.608  0 
6.6987  2.388  0 
11.6978 3.135  0 
17.8606 3.807  0 
25  4.363  0 
32.899  4.76  0 
41.3176 4.972  0 
50  4.962  0 
58.6824 4.712  0 
67.101  4.247  0 
75  3.612  0 
82.1394 2.872  0 
88.3022 2.108  0 
93.3013 1.402  0 
96.9846 0.83  0 
99.2404 0.462  0 
100  0.333  0 
999  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 
L.E. radius = .448 percent chord 



The file formats for Brock08act.txt and Brock66act.txt utilize the same number of rows 
and columns as the previous formats (NACAa=0.8.txt and NACA66-008.txt).  The only 
difference is that when there are less than 26 offset locations, the number 999 must be 
put after the last data point.  This instructs the code to stop reading in data points.  All 
other values after the last offset location must be filled in with zeros to maintain proper 
file format and size.  Also, dy/dx values for thickness distributions are not required, and 
may be filled in with zeros if unknown. 


