
Minimum Pressure Envelope Cavitation Analysis
Using Two-Dimensional Panel Method

by

Christopher J. Peterson

B.S. Mechanical Engineering
University of Illinois (1998)

Master of Engineering Management

Old Dominion University (2006)

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

MASTER OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

AND MASTER OF SCIENCE IN MECHANICAL ENGINEERING
AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

©2008 Christopher J. Peterson. All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole
or in part in any medium now known or hereafter created.

Signature of Author__
Department of Mechanical Engineering

May 9, 2007

Certified by__
Patrick Keenan

Professor of Naval Architecture
Thesis Supervisor

Certified by__
Richard Kimball

Thesis Supervisor

Accepted by___
Lallit Anand

Professor of Mechanical Engineering
Chairman, Departmental Committee on Graduate Students

 2

Minimum Pressure Envelope Cavitation Analysis
Using Two-Dimensional Panel Method

by

Christopher J. Peterson

Submitted to the Department of Mechanical Engineering on May 9, 2007 in
Partial Fulfillment of the Requirements for the Degrees of

Master of Science in Naval Architecture and Marine Engineering
and

Master of Science in Mechanical Engineering

ABSTRACT

An analysis tool for calculating minimum pressure envelopes was developed using XFOIL. This
thesis presents MATLAB® executables that interface with a modified version of XFOIL for
determining the minimum pressure of a foil operating in an inviscid fluid. The code creates
minimum pressure envelopes, similar to those published by Brockett (1965). XFOIL, developed
by Mark Drela in 1986, is a design system for Low Reynolds Number Airfoils that combines the
speed and accuracy of high-order panel methods with fully-coupled viscous/inviscid interaction.
XFOIL was altered such that it reads in command line arguments that provide operating
instructions, rather than by an operator interation via menu options. In addition, all screen output
and plotting functions were removed. These modifications removed XFOIL’s user interface, and
created a “black box” version of XFOIL that would perform the desired calculations and write
the output to a file. These modifications allow rapid execution and interface by an external
program, such as MATLAB®. In addition, XFOIL’s algorithms provide a significant
improvement in the accuracy of minimum pressure prediction over the method published by
Brockett.

Development of the modified XFOIL and MATLAB® interface contained in this thesis is
intended for future interface with Open-source Propeller Design and Analysis Program
(OpenProp). OpenProp is an open source MATLAB®-based suite of propeller design tools.
Currently, OpenProp performs parametric analysis and single propeller design, but does not
perform cavitation analysis. Minimum pressure envelopes provide the propeller designer
information about operating conditions encountered by propellers. The code developed in this
thesis allows the designer to rapidly assess cavitation conditions while in the design phase, and
make modifications to propeller blade design in order to optimize cavitation performance. A
methodology for design is discussed outlining future integration with OpenProp.

Thesis Supervisor: Prof. Patrick Keenan
Title: Professor of Naval Architecture

Thesis Supervisor: Richard W. Kimball

 3

Table of Contents

Table of Contents..3
List of Figures...4
List of Tables..4
1 Introduction...5
2 Conformal Transformations...8

2.1 History ..8
2.2 Use of Conformal Transformations..8

3 Brockett’s Analysis ...12
3.1 Introduction to Brockett’s Analysis..12
3.2 User Input to MATLAB Version of Brockett Code..12
3.3 Output from Brockett.m...13
3.4 Brockett Analysis Results ..15

4 Introduction to XFOIL ..19
4.1 XFOIL Functionality ...19
4.2 XFOIL Formulation Summary...19
4.3 Adaptation of XFOIL ..20

4.3.1 Executing XFOIL ..20
4.4 Comparison of XFOIL Calculated Pressure Distributions ..22

5 Minimum Pressure Envelope Analysis ..25
5.1 Background ...25
5.2 Description of Minimum Pressure Envelope Generation..25

5.2.1 Foil Shape Generation..25
5.2.2 User Specifications and Output from XBucket.m ...27

5.3 Comparison of Brockett’s Method to XFOIL Results...30
6 OpenProp Implementation Approach...33

6.1 Analysis of Existing Foils..34
6.2 Geometric Design to Prevent Cavitation ..35

7 Conclusion ..39
7.1 Recommendations for Future Work ...39

7.1.1 Viscous Calculations..39
7.1.2 OpenProp Integration...40

Bibliography ...41
Appendix A: Matlab Script for Conformal Transformation of Karman-Trefftz Foil.............42
Appendix B: MATLAB Code of Brockett’s Work (Brockett.m)....................................46
Appendix C: Brockett.m Variable Descriptions...61
Appendix D: Sample Input Scripts for Brockett.m...64
Appendix E: Brockett.m Sample Output ...68
Appendix F: Modified XFOIL User Guide. ..72
Appendix G: Instruction for compiling modified XFOIL Code..73
Appendix H: MATLAB Files for Calculation of Minimum Pressure Envelopes80
Appendix I: Meanline and Camber Data File Format ...89

 4

List of Figures

Figure 1: Potential Flow Solution for 2-D Cylinder ..9
Figure 2: Karman-Trefftz Foil and Streamlines ..10
Figure 3: Karman-Trefftz Foil Pressure Distribution. ...11
Figure 4: Comparison of Brockett Method to Exact Solution, α = 0° ..16
Figure 5: Comparison of Brockett Method to Exact Solution, α = 5° ..16
Figure 6: Comparison of Brockett Method to Exact Solution, α = 10°17
Figure 7: Comparison of Brockett Method to Exact Solution, α = -5°.......................................17
Figure 8: Comparison of XFOIL and Brockett Method to Exact Solution, α =10°22
Figure 9: Comparison of XFOIL and Brockett Method to Exact Solution, α =5°23
Figure 10: Comparison of XFOIL and Brockett Method to Exact Solution, α =0°23
Figure 11: Comparison of XFOIL and Brockett Method to Exact Solution, α =-5°24
Figure 12: Minimum Pressure Envelopes for NACA 66 Section...27
Figure 13: Minimum Pressure Envelopes for NACA 66 Section (TMB Modified)28
Figure 14: Sample Viscous and Inviscid Minimum Pressure Envelopes29
Figure 15: Sample Viscous and Inviscid Minimum Pressure Envelopes30
Figure 16: Minimum Pressure Envelope Comparison...31
Figure 17: Minimum Pressure Envelopes for Design..36

List of Tables

Table 1: Comparison of Brockett’s Published data to MATLAB Version of Calculations.........14
Table 2: Comparison of Brockett’s Method of Calculation of Minimum18

 5

1 Introduction
The study of propeller cavitation and its inception is an important aspect of propeller

design. In order to accurately predict cavitation inception, it is necessary to be able

to determine the actual pressure distribution in the fluid. By comparing the pressure

coefficient to the local cavitation number, an estimate of the local cavitation

conditions may be made. This is often accomplished by determining the fluid

velocity distribution in the fluid, and then using the velocity to calculate local

pressure conditions. Specifically, the pressure distribution is desired along the

upper and lower surfaces of the foil in order to determine lift, drag, moment, and

cavitation inception.

An early approach to this problem was to assume that the working fluid was

inviscid. This assumption allowed the use of potential flow theory to calculate

velocity as a function of location within the fluid. However, this method was limited

to very simple shapes, such as a two-dimensional cylinder. Potential theory lacked

the ability to directly calculate the fluid velocities around complex geometries such

as foil surfaces.

Conformal mapping provided a method by which the exact velocity distribution could

be calculated for certain types of foil shapes. However, exact conformal

transformations for all foil shapes are not possible. Although various

transformations have been introduced, this project uses the Karman-Trefftz foil as a

comparison for numerical approaches. To further extend the use of conformal

transformations, numerical approaches were developed to approximate the

mapping function for foils of arbitrary shape.

An improved approach to obtain an accurate estimate of the actual pressure

distribution on two-dimensional foils of arbitrary shape was developed by Brockett

[1]. Brockett’s work was based on the work of Moriya [2] which is an approximate

conformal transformation of the circle to an airfoil profile and gives equations for the

velocity distribution. Brockett published a FORTRAN computer program that would

 6

accept foil ordinate input, in various formats, and calculate the velocity and pressure

distributions at a specified angle of attack or lift coefficient.

The purpose of this report is to present a modified approach to the work of Brockett,

and present an improved method for computing the minimum pressure envelopes of

a foil. As a reference, Brockett’s method of calculating the minimum pressure

distribution was programmed into MATLAB. Sample input provided by Brockett

was used to verify accuracy of the MATLAB version of Brockett’s work.

A modified approach using the two-dimensional panel method of XFOIL is

presented. Rather than using the approximate conformal transformation method

presented by Brockett, a modified version of XFOIL was used to perform the

calculations for pressure distribution. The modified XFOIL executable removed all

interactive user interfaces, including menu driven options and interactive screen

output. In addition, desired output is saved as a text file, rather than plotting to the

screen. The development of the modified XFOIL executable allows the use of an

external program, in this case MATLAB, to call XFOIL to perform the desired

calculations. The results are then saved as a text file, and may be read in by

MATLAB, which conducts the desired analysis and output.

A Karman-Trefftz foil was used as a reference for comparison. The analytic solution

for the pressure distribution on the foil was used as the baseline to which the

numerical methods were compared. The method presented using XFOIL to

conduct calculations is nearly indistinguishable from the analytic solution, a

significant improvement over the Brockett method that underestimated the minimum

pressure by 28% at a high angle of attack (10°).

The intention of this project was to develop an improved method for computing

minimum pressure envelopes for an arbitrary foil shape. In addition, it was

developed such that this method would be integrated into the Open-source

Propeller Design and Analysis Program (OpenProp). OpenProp is an open source

MATLAB®-based suite of propeller design tools. OpenProp currently performs

 7

parametric analysis and single propeller design, but does not perform cavitation

analysis. The development of the MATLAB code in this project would aid the

designer in the rapid design of propellers by providing a quick method to predict

cavitation performance of a propeller, and allow the analysis of cavitation

performance early in the design process. Conceptual implementation will be

discussed later in this report.

 8

2 Conformal Transformations
2.1 History
Prior to the development of the computer, obtaining an accurate solution for the flow

around a complex shape was a challenging task. The development of conformal

transformations was therefore of great benefit, as it provided an analytic solution for

the exact inviscid flow solution to a select number of foil shapes. This method was

developed by Joukowski in 1914. Karman and Trefftz then introduced a more

general mapping function, which was a special case of the Joukowski

transformation. Theodorsen [3] then built upon this work and developed an

approximate numerical technique for obtaining the mapping function of an arbitrary

foil shape. These developments ultimately led to the work of Brockett, and his

development of the design charts published in 1966[4].

2.2 Use of Conformal Transformations
Although a detailed explanation of conformal transformations is not warranted here,

the motivation of this project deserves a brief description of the procedure of

conformal transformations, in order to highlight the significant improvements of the

work presented. The below derivation is an adaptation of reference [5]

Potential flow solution for a two-dimensional cylinder is easily described and

understood. It consists of a source-sink dipole, oriented by the direction of the

uniform stream. This produces streamlines that define the two-dimensional shape

shown in Figure 1.

 9

Figure 1: Potential Flow Solution for 2-D Cylinder
The Karman-Trefftz transformation maps a complex point z, where z = X + i*Y, from

the Z-Plane to a point ζ using equation (2.1) below.

() ()

() ()

a z a z a

z a z a

! !

! !

!
"

$+ + %
& '=

$+ % %
& '

 (2.1)

In order to evaluate the velocities in the ζ-Plane the derivative dζ /dz must be

evaluated using equations (2.2) and (2.3) below.

() ()

() ()

1 12 2

2

4 a z a z a
d

dz
z a z a

! !

! !

!"
#$ %# +

& '=
$ %+ # #
& '

 (2.2)

 []
[]

z
u iv

u iv
d

dz

! !

"
" = (2.3)

-2 -1 0 1 2 -2

-1

0

1

2
Z-plane

Potential Flow Around a Circle

 10

In order to map the circle into the ζ-plane, the Kaman-Trefftz method requires that

the circle center be defined by xC and yC. Also, the trailing edge angle, τ, is defined

in degrees and related by 2 180! "= # . Finally, a, which is the X-intercept, is set

equal to unity. The foil in Figure 2 below was developed by defining xC = -0.1 and

yC= 0.15, and τ = 10°. In addition, an angle of attack may be specified, however, in

Figure 1 and Figure 2, the angle of attack is zero. Lastly, the circulation is set in

order to meet the Kutta condition to ensure smooth flow leaving the trailing edge.

Figure 2: Karman-Trefftz Foil and Streamlines
To evaluate the velocity and calculate the pressure distribution for the ideal fluid

flow over the foil surface, the velocities in the ζ-Plane were evaluated using

Equation (2.3), and the pressure coefficient, Cp, was calculated using Equation

(2.4), where q is the absolute velocity, and U is the free stream velocity.

 ()
2

2
1

1
2

p

p p q
C

UU!

"#
= = # (2.4)

-3 -2 -1 0 1 2 3 -2

-1.5

-1

-0.5

0

0.5

1

1.5

2

ζ -Plane
Potential Flow Around Mapped Foil

 11

Since the Karman-Trefftz foil provides an analytic solution for the potential flow

around the mapped foil, it provides an exact solution to which numerical methods

may be compared. Figure 3 shows the analytic pressure distribution for the

Karman-Trefftz foil shown in Figure 2.

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = 0 °

Figure 3: Karman-Trefftz Foil Pressure Distribution.
The analysis above is the result of the MATLAB script contained in Appendix A:

Matlab Script for Conformal Transformation of Karman-Trefftz Foil. This script also

generates and exports data for further analysis.

 12

3 Brockett’s Analysis
3.1 Introduction to Brockett’s Analysis
In reference [1], Brockett developed a computer code to evaluate the steady two-

dimensional pressure distribution on arbitrary foils, and presented the results. This

code is based on an approximate potential theory suggested by Moriya which is

empirically modified in a manner suggested by Pinkerton to give an arbitrary lift for a

set incidence, while satisfying the Kutta condition. Interpolation functions for the

ordinates were used to reduce the calculations to a straight-forward numerical

procedure. Brockett presents a FORTRAN computer program, which, as part of this

thesis, was rewritten as a MATLAB script in order to facilitate simple input and

output. The original code was left unaltered as much as possible, such that the

algorithms were left intact. The only significant changes are the method in which

data was fed to the program, and the programming structure as required by

MATLAB. Also, MATLAB allows variables to be defined by the user, or data can be

read in by MATLAB, rather than using FORTRAN control card format specified by

Brockett. This functionality greatly enhances the interface capability of the program

by the user, and allows more rapid analysis and comparison of results. The code is

presented in Appendix B: MATLAB Code of Brockett’s Work, and a description of

the main variables used in the program are included in Appendix C: Brockett.m

Variable Descriptions.

3.2 User Input to MATLAB Version of Brockett Code
FORTRAN used formatted control cards, which allowed the user to input data to be

processed by the program. This method of data has been superceded by either

direct input by the user or digital data saved as files on the computer. The MATLAB

code developed maintains as much original structure as possible, while allowing the

operator to specify which data will be used as input, which is accomplished by the

use of MATLAB script files. These files allow the user to specify the data to be

processed for each of the formats required by Brockett’s code. In reference [1],

Brockett provides sample input and output of the original code. The first script file in

Appendix D: Sample Input Scripts for Brockett.m., REQD_IN.m, duplicates the

 13

sample input presented by Brockett, and was used as a validation case for the

MATLAB code. Results matched the values presented in Brockett’s sample output

on pages 70 – 72A of reference [1]. This format of this script file is required when

inputting data at the points at the required offset locations as required by

BROCKETT.m.

Also included in Appendix D: , are ARB_IN.m, KT_IN.m, and Brock_IN.m. The

ARB_IN.m is a sample file for the format required to input foil ordinates at arbitrary

locations. ARB_IN.m is written to accept input similar to that presented by Brockett

in Figure 4b of reference [1]. The format is for input of foil ordinates at arbitrary

stations. The format allows multiple angles of attack to be input, resulting in the

calculation of pressure distribution at each angle of attack. This format accepts

input, as specified by Brockett, that specifies airfoil ordinates in X, Y format. Data

points are required to be entered with the same number of points on the upper and

lower surface, starting with the trailing edge along the upper surface to the nose

location, continuing along the lower surface to the trailing edge. KT_in.m is a script

file used to import the data generated by the conformal transformation of Appendix

A: , used to compute the pressure distribution predicted by Brockett. Brock_IN.m

is used to input the geometry for the NACA 66, a = 0.8 (TMB Modified) foil used by

Brockett in reference [4]

Brockett’s FORTRAN program required very specific format for inputting data.

Since the original code was maintained similar to the original structure, several

operational variables must be specified for the code to function properly. In

addition, input data must be carefully structured in the proper format to be

processed correctly. The script files of Appendix D: were used to accomplish the

variable definitions required by Brockett.m.

3.3 Output from Brockett.m
To validate that the MATLAB version of Brockett’s code was accurate, a test run

was conducted that replicated the sample case included in reference [1]. The

REQD_IN.m script file was used, and the output of Brockett.m, contained in

 14

Appendix E: , was verified using reference [1]. A summary of the output at sample

chord position for the MATLAB version of Brockett’s program, and the original data

published by Brockett is shown in Table 1. As seen in Table 1, the data agrees

within approximately 7 significant figures, which is the number of significant figures

expected for the single-precision data type used by FORTRAN. The default for

MATLAB is to use double-precision floating-point numbers, which would explain the

slight differences between MATLAB calculations, and Brockett’s published data.

Table 1: Comparison of Brockett’s published data to MATLAB Version of Calculations

Output from the original and the MATLAB version of Brockett’s work include multiple

tables consisting of Profile Constants and Pressure Distribution information. In

addition to the screen output of the data, the MATLAB version saves the data as

text files labeled Pressure.txt and Profile.txt, which are saved in the “Data”

folder. This data is later read into variables by MATLAB, or may be opened by the

user.

 15

3.4 Brockett Analysis Results
To compare the pressure distribution calculated by the Brockett method to the exact

solution shown in Figure 3, KT_IN.m was written to read in the ordinates of the

normalized Karman-Trefftz foil generated in Figure 2. The X-Y ordinates are

cosine-spaced, and the number of points is specified by the ‘out_pts’ variable in

ConfrmlTrans.m. If out_pts is set to 37, this matches the required input

location format of Brockett, but is not required. Otherwise, BROCKETT.m will accept

format as arbitrary location input. Results obtained from the use of a Karman-

Trefftz foil shape is shown in Figure 4.

Figure 4 through Figure 7 shows that Brockett’s method predicts the general shape

of the pressure distribution and gives an estimate of the minimum pressure for the

foil, but does not accurately predict the magnitude. In Figure 4, the actual minimum

pressure coefficient, –Cpmin, is 1.192 at X/C = 0.32. Brockett’s analysis predicts that

–Cpmin = 1.079 at X/C = 0.33, which falls short by 9.5%. This error increases as

angle of attack increases. Inviscid minimum pressure coefficients predicted by

Brockett are compared to analytic results for the Karman-Trefftz foil for various

angles of attack in Table 2.

 16

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

X: 0.3227

Y : 1.192

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = 0 °

X: 0.329

Y : 1.079

Conformal Transformation

Brockett Method (Inviscid)

Figure 4: Comparison of Brockett Method to Exact Solution, α = 0°

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

 X: 0.1477

Y : 1.787

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = 5 °

X: 0.1786

Y : 1.542

Conformal Transformation

Brockett Method (Inviscid)

Figure 5: Comparison of Brockett Method to Exact Solution, α = 5°

 17

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

5

X: 0.001959

Y: 4.445

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = 10 °

X: 0.007596

Y: 3.19

Conformal Transformation

Brockett Method (Inviscid)

Figure 6: Comparison of Brockett Method to Exact Solution, α = 10°

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

 X: 0.007596

Y: 1.801

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = -5 °

X: 0.01204

Y : 1.706

Conformal Transformation

Brockett Method (Inviscid)

Figure 7: Comparison of Brockett Method to Exact Solution, α = -5°

 18

Table 2: Comparison of Brockett’s Method of Calculation of Minimum

Pressure Coefficient to Exact Solution for a Karman-Trefftz Foil

 19

4 Introduction to XFOIL
4.1 XFOIL Functionality
XFOIL 1.0 was written by Mark Drela in 1986. The main goal was to combine the

speed and accuracy of high-order panel methods with the new fully-coupled

viscous/inviscid interaction method used in the ISES code developed by Drela and

Giles. A fully interactive interface was employed to make it much easier to use than

the traditional batch-type CFD codes. Several inverse modes and a geometry

manipulator were also incorporated early in XFOIL's development, making it a fairly

general airfoil development system [6].

XFOIL is an analysis and design system for Low Reynolds Number Airfoils. XFOIL

uses an inviscid linear-vorticity panel method with a Karman-Tsien compressibility

correction for direct and mixed-inverse modes. Source distributions are

superimposed on the airfoil and wake permitting modeling of viscous layer influence

on the potential flow. Both laminar and turbulent layers are treated with an e9-type

amplification formulation determining the transition point. The boundary layer and

transition equations are solved simultaneously with the inviscid flow field by a global

Newton method [7].

4.2 XFOIL Formulation Summary
Details of XFOIL’s formulation are presented in reference [7], and will only be

summarized here. XFOIL uses a general inviscid airfoil flow field, constructed by

the superposition of a free stream flow, a vortex sheet of strength γ on the airfoil

surface, and source sheet strength, σ, on the airfoil surface and wake. The airfoils

contour and wake trajectory is discretized into flat panels, with panel nodes on the

airfoil and wake. Each airfoil panel has a linear vorticity distribution defined by the

node value. Each airfoil and wake panel has a constant source strength, which is

later related to viscous layer quantities. Requiring the streamfunction to be equal to

a constant value at each of the nodes on the airfoil surface results in a system of

linear equations that could be solved in combination with the Kutta condition.

 20

XFOIL’s viscous formulation was not used extensively in this research, and will not

be discussed in detail.

4.3 Adaptation of XFOIL
XFOIL has been in use for many years, and has become a highly regarded analysis

tool. This project adapts the improved functionally of XFOIL for use in propeller

design by using the algorithms contained within XFOIL to conduct the analysis of a

given foil. In particular, XFOIL is used to develop minimum pressure envelopes, or

cavitation buckets, as presented by Brockett [4].

XFOIL in its current release (XFOIL 6.94) is a menu driven program, which requires

interactive user input and manipulation. In addition, XFOIL generates various

output plots to allow graphical display and interface by the user. In order to adapt

XFOIL’s functionality, XFOIL was converted into a “black-box” calculation tool.

XFOIL’s menu driven functionality was removed by altering the source code such

that all desired operational instructions would be input as command line arguments,

rather than menu driven items and direct user input. All of XFOIL’s plot and screen

output utilities were also disabled. By disabling the plot functionality, calculation

speed was improved. Also, removal of XFOIL’s plot functionality, allowed simpler

compilation of the source code, since no graphical interface was required for the

operating system. Finally, XFOIL was altered such that any desired output was

written to and saved as a data file, which could be read by MATLAB or opened

directly by a text editing program.

4.3.1 Executing XFOIL

XFOIL was altered such that it reads in command line arguments that provide

instructions, rather than direct input from the operator via menu options. This allows

rapid execution by an external program, such as MATLAB. From the DOS prompt,

or by executing a system command, XFOIL can be instructed how to process input

data, and which results to save. A simple example of how the modified XFOIL

program may be executed as follows. At the DOS command prompt, in a directory

containing the xfoil.exe program, the user may type:

 21

 “xfoil NACA 4415 OPER ALFA 5 OPER CPWR output”

The above command instructs XFOIL to use internal definition for a NACA 4415 foil,

at an angle of attack of 5°, and write the pressure coefficient (Cp) distribution to a

file named “output”. When executed, the command line above results in a DOS

output of the following:

 START of XFOIL

 START of Menu Loop. Command is: NACA

 Using NACA 4415

 Max thickness = 0.150043 at x = 0.301

 Max camber = 0.039999 at x = 0.398

 START of Menu Loop. Command is: OPER

 OPER loop command: A

 Angle of Attack: 5.000

 Calculating unit vorticity distributions ...

 OPER loop complete.

 START of Menu Loop. Command is: OPER

 OPER loop command: CPWR

 OPER loop complete.

The DOS output above represents informational items intentionally left in the XFOIL

program to allow the user to verify that commands were executed properly. The

result of the XFOIL calculations are written to a user specified file. Sample format is

as follows. The first column is the X-location, starting at the trailing edge, continues

along the upper surface around the nose back to the trailing edge. The second

column is the calculated pressure coefficients at the corresponding locations.

 # x Cp
 1.00000 0.48832
 0.99329 0.28542
 0.98206 0.19383
 0.96938 0.11911
 … …
 0.95217 0.26832
 0.96743 0.28589
 0.98105 0.31188
 0.99296 0.35546

 1.00000 0.48832

 22

Details of the structure and format of commands are included in Appendix F:

Modified XFOIL User Guide. In addition, Appendix G: Instruction for compiling

modified XFOIL Code, contains additional instructions for obtaining and compiling

the source code for the modified version of XFOIL.

4.4 Comparison of XFOIL Calculated Pressure Distributions
In section 3.5, the exact solution to the Karman-Trefftz foil pressure distribution was

compared to the method presented by Brockett. Figure 8 to Figure 11 compare the

XFOIL calculated pressure distribution, the Karman-Trefftz solution and the Brockett

solution. In each instance, it can be seen that the XFOIL solution is nearly identical

to the analytic solution. The XFOIL calculations for Figure 8 through Figure 11 were

performed by instructing XFOIL to repanel the foil using 50 panels. Although higher

panel resolution could be specified (160 is default), 50 was specified to prevent an

excessive number of data points.

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

5

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = 10 °

Analytic Solution

Brockett Method (Inviscid)

XFOIL Calc (Inviscid)

Figure 8: Comparison of XFOIL and Brockett Method to Exact Solution, α =10°

 23

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = 5 °

Analytic Solution

Brockett Method (Inviscid)

XFOIL Calc (Inviscid)

Figure 9: Comparison of XFOIL and Brockett Method to Exact Solution, α =5°

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = 0 °

Analytic Solution

Brockett Method (Inviscid)

XFOIL Calc (Inviscid)

Figure 10: Comparison of XFOIL and Brockett Method to Exact Solution, α =0°

 24

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

Chordwise Position (X/C)

N
e
g
a
t
i
v
e

o
f

P
r
e
s
s
u
r
e

C
o
e
f
f
i
c
i
e
n
t

(
-
C

p)

Pressure Distribution for ! = -5 °

Analytic Solution

Brockett Method (Inviscid)

XFOIL Calc (Inviscid)

Figure 11: Comparison of XFOIL and Brockett Method to Exact Solution, α =-5°

 25

5 Minimum Pressure Envelope Analysis
5.1 Background
In reference [4], Brockett published minimum pressure envelops for modified NACA-

66 sections with NACA A=0.8 camber and BUSHIPS Type I and Type II sections

using the calculation method described in section 3. These minimum pressure

envelopes were computed for steady two-dimensional flow, with an empirical

correction for viscosity. In addition, design charts for selecting “optimum” foils were

included.

The work presented here includes a similar analysis method, with calculations

performed by XFOIL, allowing the generation of minimum pressure envelopes for an

arbitrary foil shape. This was accomplished using MATLAB integrated with the

modified version of XFOIL described in section 4.3. Based on the improved

accuracy of XFOIL over the method proposed by Brockett as shown in section 4.4,

it is ascertained that this method provides a more accurate calculation of the

pressure distribution, and location and magnitude of the minimum pressure for the

inviscid solution

5.2 Description of Minimum Pressure Envelope Generation
Appendix H: MATLAB Files for Calculation of Minimum Pressure Envelopes

contains the MATLAB files that were used to generate the minimum pressure

envelopes using the modified XFOIL executable. This script performs various

functions described in the following sections.

5.2.1 Foil Shape Generation

Foils may be defined in either of two methods. XFOIL contains built in functions

defining NACA 4 and 5-digit series foils. If the user desires to use these NACA

foils, then the foil_type variable should be set to “NACA”. If NACA series foil

shape is desired, the user must also set the variable foil_name to either “FOUR”

or “FIVE”, depending on which NACA series is desired, and the chordwise position

of maximum camber must be specified by the fo_loc variable.

 26

If profile data will be read in from a data file, then the foil_type variable should

be set to “LOAD”. Foil shape is defined by meanline and thickness information.

The data files containing the meanline and thickness information are specified by

the user using the mean_type and thick_type variables, which are set to the

name of the files containing the meanline and thickness offset values. The data

files need to be located in the corresponding “Meanline” and “Thickness” folders.

Sample format for these files is contained and described in Appendix I: Meanline

and Camber Data File Format.

The makefoil.m function inputs the meanline and camber data from the files

specified, and combines the meanline and thickness distributions in the standard

method as described by Abbott and Von Doenhoff [8]. In addition, the camber and

thickness distributions are scaled if required. The makefoil.m function utilizes

MATLAB’s spline function to interpolate the required points to define the foil surface.

XFOIL requires that foil geometry is specified by defining the X-Y locations along

the foil surface from trailing edge, along the upper surface, around the leading edge,

and back to the trailing edge along the lower surface. This is accomplished within

the makefoil.m function.

The user may specify the number of desired output points to export to XFOIL by

specifying the N_parab_eval and N_surf_pts in the makefoil.m script. Care

should be used to specify a reasonable number of points, especially along the

leading edge. Too many points may cause errors in XFOIL due to excessively

small spacing. However, a sufficient number of points to adequately define the foils

should be used, provided they are adequately spaced, with more points in regions

of higher curvature. N_parab_def specifies the number of points used for creating

the spline that defines the nose radius. If less than approximately 20 points are

specified, the spline utility fails to produce a smooth output curve. Input and output

may be plotted to verify proper definition of surface locations by setting the

make_plot variable to ‘yes’, otherwise it should be set to ‘no’ to prevent excess

plot generation.

 27

5.2.2 User Specifications and Output from XBucket.m

The output from the MATLAB script, XBucket.m, may be specified by the user.

The purpose of the script is to produce minimum pressure envelopes for the foil

geometry specified by the user. Output plots are a similar format to that of Brockett

[4]. Sample output plots show in Figure 12 and Figure 13 below.

0.5 1 1.5 2 2.5 3

1

2

3

4

5

6

7

8

-CP
min

A
n
g
l
e

o
f

A
t
t
a
c
k

(

!
)

INVISCID Brockett Diagram

Meanline: Brock08act.txt. Thickness: Brock66act.txt

 Fo/c = 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 12: Minimum Pressure Envelopes for NACA 66 Section

 (TMB Mod. Nose and Tail) with Zero Camber at Various Thicknesses

 to/C

 28

0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-CP
min

A
n
g
l
e

o
f

A
t
t
a
c
k

(

!
)

INVISCID Brockett Diagram

Meanline: Brock08act.txt. Thickness: Brock66act.txt

 Fo/c = 0.04

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 13: Minimum Pressure Envelopes for NACA 66 Section (TMB Modified)

with the NACA a=0.8 Camberline, Having a Maximum Camber Ratio of 0.04 at Various Thicknesses.

XBucket.m generates output as in Figure 12 and Figure 13 based on user

specified ranges. The upper and lower bounds of the angle of attack for which

calculations and plotting are performed is specified by Alpha_lim.

Alpha_delta specifies the resolution, or increment in angle of attack, for which

each minimum pressure coefficient is determined. Larger values of Alpha_delta

save calculation time, but produce less accurate plots.

Each plot produced is for a specified camber ratio. The desired range and camber

ratio increment are specified by the foc_rng and foc_step variable. A

separate plot will be produced for each camber ratio from the lower foc_rng value

to the upper foc_rng value, in increments of foc_step.

Similarly, on each plot are minimum pressure envelopes for each thickness ratio.

The range of values for thickness is specified by toc_rng, in increments of

toc_step. A separate curve is plotted for each thickness value.

 to/C

 29

Also, although not a specific concentration of this project, the user may specify that

XFOIL’s viscous calculation mode be used. In order to conduct viscous

calculations, the user must set visc_tog to 1, and specify the desired Reynolds

number for calculation. This function has been incorporated for further research.

Initial results are not reliable, as XFOIL does not converge consistently. The effect

of convergence failure is shown for a typical case in Figure 14. The jagged curve is

a result of XFOIL’s viscous caluculations failuring to converge when calculating the

minimum pressure coefficient for a given angle of attack.

0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-CP
min

A
n
g
l
e

o
f

A
t
t
a
c
k

(

!
)

VISCOUS Brockett Diagram

Meanline: Brock08act.txt. Thickness: Brock66act.txt

 Fo/c = 0.04

Inviscid

Viscous

Figure 14: Sample Viscous and Inviscid Minimum Pressure Envelopes

Calculated by XFOIL (Reynolds Number = 1*106, 100 Maximum Iterations)

It is believed that small panel size (or excessive number of panels), angle of attack,

Reynolds Number, maximum number of iterations and viscous solution acceleration

parameter (VACC) are all factors that affect XFOIL convergence. Various

combinations were tried to improve comvergence. Better results were obtained

when adding the command to repanel the foil with 70 panesl, vice the previous

value of 140. Results are shown in Figure 15. Additional research should be

 30

conducted to evaluate the viscous calculation cabability of XFOIL, and determine

how to most effectively set parameters that result in smooth, consistent, convergent

results.

0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-CPmin

A
n
g
l
e

o
f

A
t
t
a
c
k

(

!
)

VISCOUS Brockett Diagram

Meanline: Brock08act.txt. Thickness: Brock66act.txt

 Fo/c = 0.04, To/C = 0.1

VISCOUS

INVISCID

Figure 15: Sample Viscous and Inviscid Minimum Pressure Envelopes

Calculated by XFOIL (Reynolds Number = 1*106, 100 Maximum Iterations, 70 Panels)

5.3 Comparison of Brockett’s Method to XFOIL Results
This intent of this research was to create a MATLAB based utility that would

reproduce the minimum pressure diagrams published by Brockett [4], which could

be later integrated into OpenProp for propeller design. Initial attempts using a

simple two-dimensional panel method did not closely match Brockett’s published

results. As a result, XFOIL was implemented in order to conduct the pressure

distribution calculations. XFOIL was chosen due to its highly regarded reputation as

an accurate tool for conducting foil analysis and design. Results using XFOIL were

still not able to reproduce the data as expected. Finally, the program as published

by Brockett in reference [1] was reprogrammed in MATLAB in order to conduct

 31

further comparison. It was this comparison that revealed the noticeable differences

between Brockett’s results and exact theory for potential flow, as previously shown

in Figure 4 through Figure 7.

Figure 16 below illustrates the differences between Brockett’s published minimum

pressure envelopes, and the XFOIL calculated results. Figure 16 presents

minimum pressure envelopes for the NACA 66 (TMB Modified), a = 0.8 meanline.

Each individual curve was developed for a camber ratio of 0.06, and a thickness

ratio of 0.12.

0 0.5 1 1.5 2 2.5 3

-4

-2

0

2

4

6

8

-CPmin

A
n
g
l
e

o
f

A
t
t
a
c
k

(

!
)

Minium Pressure Envelopes

 Fo/c = 0.06 To/C = 0.12

Brockett (Inviscid)

Brockett (Viscous)

XFOIL (Inviscid)

Figure 16: Minimum Pressure Envelope Comparison

Figure 16 illustrates the difference between Brockett (Inviscid) and the XFOIL

(Inviscid) solutions. The difference is a result of inaccuracies of the Brockett

method to predict the minimum pressure coefficient, as previously discussed in

section 4.4, and summarized in Table 2. Specifically, the Brockett method

underestimates the magnitude of the minimum pressure coefficient for intermediate

and positive angles of attack, which corresponds to the near vertical and upper

 32

portions of the minimum pressure envelope, and overestimates the magnitude of

minimum pressure at negative angles of attack. The near vertical portion of the

graph represents the region of operation when the minimum pressure occurs in the

vicinity of the mid-chord. The upper and lower portions of the envelope correspond

to nose cavitation, when the minimum pressure occurs near the leading edge of the

foil due to elevated angles of attack.

The trend shown in Figure 16 is typical for all thicknesses and camber ratios. As a

result, the overall minimum pressure envelopes as shown in Figure 12 and Figure

13 do not exactly match the published results of Brockett [4]. In addition, Brockett’s

published minimum pressure envelops for modified NACA-66 sections with NACA

a=0.8 camber include an empirical correction for viscosity. The difference between

Brockett’s potential theory calculation and empirical correction for viscosity is also

shown in Figure 16. The magnitude of the difference between Brockett’s viscous

and inviscid calculations is approximately equal to the magnitude difference

between Brockett’s inviscid calculation and XFOIL. As a result, it is believed that

further investigation should be conducted to account for the viscous effects, and

how viscous effect could be accounted for using XFOIL. As previously noted,

XFOIL is capable of performing viscous calculations, and that ability was retained in

the modified version XFOIL used for this work. However, accurate results were not

reliably obtained, and were not evaluated. Further research in this area is

recommended, which would greatly enhance the capabilities generated as for this

project.

 33

6 OpenProp Implementation Approach
Open-source Propeller Design and Analysis Program (OpenProp) is an open source

MATLAB®-based suite of propeller numerical design tools. This program is an

enhanced version of the MIT Propeller Vortex Lattice Lifting Line Program (PVL)

developed by Professor Justin Kerwin at MIT in 2001. OpenProp v1.0, originally

titled MPVL, was written in 2007 by Hsin-Lung Chung and is described in detail in

[9]. Two of its main improvements versus PVL are its intuitive graphical user

interfaces (GUIs) and greatly improved data visualization which includes graphic

output and three-dimensional renderings.

OpenProp was designed to perform two primary tasks: parametric analysis and

single propeller design. Both tasks begin with a desired operating condition defined

primarily by the required thrust, ship speed, and inflow profile. The parametric

analysis produces efficiency diagrams for all possible combinations of number of

blades, propeller speed, and propeller diameter for ranges and increments entered

by the user. Efficiency diagrams are then used to determine the optimum propeller

parameters for the desired operating conditions given any constraints (e.g. propeller

speed or diameter) specified by the user.

OpenProp was developed to serve as an open source code for propeller design.

While it is currently a tool used in the initial design phase, it is a base program that

can be continually expanded to perform detailed design and analysis of

sophisticated marine propulsors and turbines. Development of a method of

cavitation analysis that could be integrated into OpenProp was a primary motivation

for this thesis.

The use of MATLAB provides for integration into the propeller design suite,

OpenProp. Integration of cavitation analysis into OpenProp would provide the

designer information about cavitation conditions while early in the design process,

allowing adjustments to blade geometry to correct deficiencies. Following the

design recommendations of Brockett [4], design charts or internal data feedback

could provide adjustments to blade geometry. Cavitation prediction could either be

 34

conducted for existing foils or foil geometry could be selected in order to avoid

cavitation conditions for a given set of operating conditions.

6.1 Analysis of Existing Foils
For existing propeller, where blade geometry is known, the code presented here

could be used to conduct cavitation analysis for the foil. The geometry for the foil

can be formatted as required, and may be used as input. To predict cavitation on

existing foils, the minimum pressure curve for the propeller geometry at the radial

position under investigation should first be generated. Then, based on the given

operating conditions (angle of attack and local cavitation number, σ = [p∞ -

pvapor]/[½ρU2]), the operating point may be compared to the calculated minimum

pressure envelope. By setting the cavitation number equal to the negative of the

minimum pressure coefficient, the operating point may be determined. If the

operating point falls within the region bound by the minimum pressure envelope,

cavitation is assumed not to occur. Cavitation is assumed to occur in the region

outside of the minimum pressure envelope.

To analyze a complete propeller blade, it is recommended that a routine be created

that analyzes the propeller blade at various radial positions from the hub to the tip at

user specified intervals. At each radial position, the geometry must be determined

as input. In addition to the minimum pressure coefficient, the pressure distribution

along the chord may be calculated and compared to the cavitation number. By

determining where the negative of the pressure coefficient is greater than the

cavitation number, regions along the propeller where cavitation is predicted could

be predicted. These regions could then be used to produce a color coded plot of

the surface of the propeller blade, indicating regions were cavitation is predicted to

occur.

Margin to cavitation could also be determined. For propellers that are predicted not

to cavitate, the operating angle of attack can be compared to the angles of attack at

the upper and lower bounds of the minimum pressure envelope for the cavitation

number. The difference between the operating angle of attack and the angles of

 35

attack at the envelope boundaries gives an indication of how close the propeller is

to cavitation based on expected operating conditions. This information can also be

used to predict how far from design conditions the propeller may be operated before

the onset of cavitation. Varying inflow would be an example of off design conditions

that could be analyzed using the margin to cavitations. If the inflow is known to vary

by 2° around the circumference, then as long as the margin to cavitation is greater

than 2°, cavitation would not be expected to occur due to varying inflow.

6.2 Geometric Design to Prevent Cavitation
Rather than analyzing an existing propeller, minimum pressure envelopes could be

used as an aid to the designer in producing a propeller blade geometry that is

optimized to prevent cavitation. ‘Optimum’ foil geometry, as described by Brockett,

allows the greatest total angle change without occurrence of cavitation for a given

cavitation number. For symmetric foils (Figure 12), the optimum foil is the one for

which the minimum pressure envelope is the widest at the given –Cpmin. In other

words, it is the thickness which provides the greatest envelope width for the given

operating conditions.

For cambered foils, there are two separate curves that bound the minimum

pressure envelopes, one for the upper portion, and one for the lower. These

bounding curves are shown below in Figure 17. The solid line shows the bounds for

the upper portion and the dashed line shows the bound for the lower. These charts

can be use to aid in selection of the appropriate thickness and camber based on

operating conditions.

 36

Figure 17: Minimum Pressure Envelopes for Design

Based on design specifications (lift coefficient and cavitation number), the designer

has the option of two methods for determining an angle of attack for which to place

the foil. The angle of attack may be specified as the ideal angle of attack, or the

angle that maximizes the margin to cavitation, located halfway between the

minimum pressure envelope curve for the given thickness at the specified cavitation

number.

From thin airfoil theory, the idea angle of attack, αi, is defined as the angle of attack

for which the coefficient Ao = 0. Ao is the angle of attack dependent coefficient in

the Fourier series expansion of df/dx (camberline slope) [5]. Equations (6.1) and

(6.2) below provide details.

~

0

1

i

df
d x

dx

!

"
!

= # (6.1)

to/C

0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

-1
0

1

2

3

4

5

6

-CP m i n

α

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2

Minimum Pressure
Envelopes, Fo/C = 0.04

 37

~

cos()
2

c
x x= ! (6.2)

The ideal angle of attack is tabulated for many types of foils, or may be calculated

using the relations above. Once determined, the ideal lift coefficient, which

corresponds to the lift coefficient at the ideal angle of attack, should be evaluated,

and may be obtained from XFOIL. Once the ideal lift coefficient is determined, the

camber ratio may be determined by scaling the tabulated camber value by the same

ratio as the desired to ideal lift coefficients.

()
()

desired

ideal

table

fo
C Cl

fo Cl
C

= (6.3)

Using the minimum pressure envelopes for the calculated camber, the thickness

ratio can be determined based on the upper bounding curve of Figure 17 by

entering the graph at the operating cavitation number. Numerically, this could be

accomplished by one of two methods. If the location of the “knuckles” of the

envelopes can be identified, the bounding curve for the minimum pressure

envelopes can be determined, similar to the bounds in Figure 17. Defining the

bounding surface as a function of thickness ratio would allow the designer to directly

calculate the thickness that results in the widest envelope for the given cavitation

number. This method was attempted, but determining the location of the “knuckles”

was difficult and a reliable method was not found. Rather than determining a

function that describes the bounds of the minimum pressure envelopes, it is

recommended that the margin to cavitation be calculated incrementally for each of

the thicknesses, until a maximum is found for the specified cavitation number.

Finally, the width of the envelope can be determined by finding the intersection of

the cavitation number with the lower portion of the minimum pressure envelope for

the given thickness. The envelope width can then be compared to any radial inflow

variation to evaluate propeller performance with varying inflow.

 38

Rather than assuming the foil be operated at the ideal angle of attack, a method

that maximizes cavitation margin could be used. For this purpose, cavitation margin

is defined as the magnitude of the difference between the operating angle of attack,

and the angle at which cavitation is predicted. In order to maximize the cavitation

margin, the operating angle of attack should be exactly in the middle of the upper

and lower legs of the minimum pressure envelope.

An approach to determining angle of attack, camber and thickness, would be to

start by specify foil type, cavitation number, and required lift coefficient. Using the

foil type, minimum pressure envelopes for varying camber and thickness should be

produced. Start with the envelopes of minimum camber and the negative of the

minimum pressure coefficient equal to the cavitation number. The thickness

producing the maximum envelope width would then be determined. The, the values

for the angles of attack corresponding to the maximum with at the specified –Cp

should be determined. The operating airfoil angle of attack should be the midpoint

between these values.

Once an initial camber, thickness, and angle of attack have been specified, the

resultant lift coefficient should be calculated and compared to desired lift coefficient

as specified in the design. If the calculated lift coefficient is less than required, the

camber ratio should be increased incrementally and the thickness, angle of attack,

and lift coefficient recalculated until desired lift coefficient is achieved.

 39

7 Conclusion
A method of generating minimum pressure envelopes using XFOIL was created.

By modifying the source code, a version of XFOIL that does not require user

interaction was created. Using MATLAB to interface with XFOIL, minimum pressure

envelopes for an arbitrary foil shape can be generated, provided offset data is

available for foil geometry.

The minimum pressure envelopes created as a result of the XFOIL calculations

were compared to published work by Brockett. It was found that the two-

dimensional panel method of XFOIL could more accurately estimate the potential

flow solution for a Karman-Trefftz foil than the approximate conformal

transformation method used by Brockett. Although XFOIL includes the ability to

conduct calculations for a viscous fluid, additional work is required in order to

evaluate the limits for which XFOIL’s viscous mode will reliably converge.

The code developed as part of this thesis is intended to be used for further

integration into OpenProp. Integration into OpenProp will allow the user to both

conduct cavitation analysis and prediction for existing foils, as well as allow the

designer to consider cavitation in the design process, and select foil geometry that

will prevent cavitation.

7.1 Recommendations for Future Work
7.1.1 Viscous Calculations

In order to utilize the benefits of the highly accurate potential flow solution available

from XFOIL, the effects of viscosity must be reevaluated, and accounted for. The

empirical modification used by Brockett depends upon specifying an experimental

lift coefficient for each angle of incidence, and can be determined from a lift-curve

slope and angle of zero lift using the following equation:

 ()02
e

L
C !" # #= $ (7.1)

 40

Where η is the lift-curve slope coefficient and α0e is the experimental angle of zero

lift. It has been experimentally shown [8] that η and α0e are independent for high

Reynolds numbers (>6x106). This method should be reevaluated and compared to

the manner by which viscous calculations are conducted in XFOIL. XFOIL’s viscous

mode should be integrated into the methods presented here for calculating

minimum pressure envelopes, if found to be accurate. In addition, the parameters

affecting convergence of XFOIL’s viscous calculation should be evaluated to ensure

proper problem formulation and evaluation.

7.1.2 OpenProp Integration

The design approaches outlined in section 6 should be developed and integrated

into OpenProp. Once developed, these methods would provide great benefit and

enhance the utility of the OpenProp design suite. Program code that performs the

basic functions required to integrate cavitation design were developed in this thesis.

In particular, the development of the modified version of XFOIL allows rapid

calculation of complex foil geometries, and simplifies the method of retrieving data

from XFOIL and entering that data into MATLAB. In addition, the functions

generated in project provide a great starting point from which to develop the

functionality and usefulness of OpenProp.

 41

Bibliography

[1] Brockett, Terry E. Steady Two-Dimensional Pressure Distributions on Arbitrary

Profiles. MS Thesis, Cornell University (1965).

[2] Moriya, T. On the Aerodynamic Theory of an Arbitrary Wing Section. Journal of the

Society of Aeronautical Science, Japan, Vol. 8, no. 78 (1941), p. 1054.

[3] Theodorsen, Theodore. Theory of Wing Sections of Arbitrary Shape. NACA Rep.

411, 1931.

[4] Brockett, Terry. Minimum Pressure Envelopes for Modified NACA-66 Sections with

NACA a = 0.8 Camber and BUSHIPS Type I and Type II Sections. David Taylor Model

Basin, Report 1780. February 1966.

[5] Kerwin, Justin E. 13.04 Lecture Notes, Hydrofoils and Propellers, Massachusetts

Institute of Technology (2001).

[6] Drela, Mark and Youngren, Harold. XFOIL 6.9 User Primer (30 Nov 2001).

Retrieved Dec 15, 2007, from http://web.mit.edu/drela/Public/web/xfoil/xfoil_doc.txt

[7] Drela, Mark. XFOIL: An Analysis and Design System for Low Reynolds Number

Arifoils. In: T.J. Mueller, editor. Low Reynolds Number Aerodynamics: Proceedings for

the Conference, Notre Dame, Indiana, USA, 5-7 June 1989. Springer-Verlag, p. 1-12.

[8] Abbott, Ira H. and Von Doenhoff, Albert E. Theory of Wing Sections. Dover

Publications, Inc., New York (1959).

[9] Chung, H. An Enhanced Propeller Design Program Based on Propeller Vortex
Lattice Lifting Line Theory, MS Thesis, Massachusetts Institute of Technology,
Department of Mechanical Engineering (2007).

 42

Appendix A: Matlab Script for Conformal Transformation of
Karman-Trefftz Foil.

% Code Developed by Chris Peterson to calculate and display Conformal
% Transformation of a Karman-Trefftz foil. Intended to be used to
% compare values for different methods of calculating surface velocites
% for airfoils.
clc; clear all;close all;
%User defined Data
U = 1; %Free Stream Velocity
alpha_deg = 0; %Angle of Attack (Degrees)
xc = -0.10; %Circle Center Location (<0)
yc = 0.150; %Circle Center (>0 adds + camber)
tau = 10; %Tail Angle
n_pts = 201; %Number of points along mapped foil surface
out_pts = 36; %Total number of X-Y output points (ODD)
a = 1; %X-intercept
alpha = deg2rad(alpha_deg);
%Display parameters
No_strm = 21; %Number of Streamlines to plot
range = 3; %Z-plane X-Y Range
strm_strt = -3; %X-Location for streamline start
div = 0.1; %Grid spacing for velocity vectors on Z-plane
%Calculation of properties
beta = atan(-yc/(1-xc)); %Angle to rear stagnation point
beta_deg = rad2deg(beta); %Beta in degrees
rc = sqrt((a-xc)^2 + yc^2); %Calculate radius of circle
Gamma_calc = 4*pi*rc*U*sin(beta-alpha); %Kutta condition requirement
Gamma = Gamma_calc; %Set circulation to required
lam = 2-tau/180; %Trailing egde to lamba calculation
%Generate Z-plane Plot with streamlines and velocity vectors
[X,Y] = meshgrid(-range:div:range,-range:div:range); %Create location mesh
r = sqrt((X-xc).^2 + (Y-yc).^2); %Radius at mesh locations
%Calculate angle theta to mesh locations, 0 <= theta < 2*pi
for j=1:length(X)
 for k=1:length(X)
 if X(j,k) >= xc
 theta(j,k) = atan((Y(j,k)-yc)/(X(j,k)-xc));
 elseif X(j,k) < xc
 theta(j,k) = atan((Y(j,k)-yc)/(X(j,k)-xc)) + pi;
 end
 end
end
%Calculate velocity components u, v based on potential theory
u = U*cos(alpha) - (U.*((rc./r).^2).*cos(2.*theta - alpha))...
 - Gamma.*sin(theta)./(2.*pi.*r);
v = U*sin(alpha) - (U.*((rc./r).^2).*sin(2.*theta - alpha))...
 + Gamma.*cos(theta)./(2.*pi.*r);
%Calculate location of stagnation points
theta_s1 = asin(Gamma/(4*pi*rc*U)) + alpha;
theta_s2 = asin(-Gamma/(4*pi*rc*U)) + alpha - pi;
x_st1 = rc*cos(theta_s1)+xc;
y_st1 = rc*sin(theta_s1)+yc;
x_st2 = rc*cos(theta_s2)+xc;
y_st2 = rc*sin(theta_s2)+yc;
%Define point on circle

 43

x_circ = xc + rc*cos(0:pi/21:2*pi);
y_circ = yc + rc*sin(0:pi/21:2*pi);
z_circ = x_circ + i*y_circ; %z is complex coordinates of circle
%Eliminates points inside circle for vector plot (large values near
singularities)
u_mod = u;
v_mod = v;
for j = 1:length(X)
 for k = 1:length(X)
 if (X(j,k)-xc)^2 + (Y(j,k)-yc)^2 < rc^2
 u_mod(j,k) = 0;
 v_mod(j,k) = 0;
 end
 end
end
% Plot Z-plane, with circle, stagnation points, velocity vectors and
% streamlines.
figure()
orient landscape;
axis equal;hold on;grid on;ylim([-range range]);xlim([-range range]);
title({'Z-plane';'Potential Flow Around a Circle'});
set(gca,'YTick',-range:range);set(gca,'XTick',-range:range);
streamline(stream2(X,Y,u,v,strm_strt*ones(No_strm,1)...
 ,-range:2*range/(No_strm-1):range)); %Plots streamlines
plot(x_circ, y_circ, 'k') %Plots circle
plot(x_circ, y_circ, 'k.') %Plots circle points
plot(xc, yc, 'r+') %Plots circle center
plot(x_st1, y_st1, 'ko') %Plots stagnation point 1
plot(x_st2, y_st2, 'ko') %Plots Stagnation point 2
% quiver(X,Y,u_mod,v_mod, 'g'); %Plots Vectors
%Map surface of ccircle to Zeta-plane
Zeta_circ = lam*a*((z_circ+a).^lam + (z_circ-a).^lam)...
 ./((z_circ+a).^lam - (z_circ-a).^lam);
%Routine to find velocities and -Cp on foil surface
theta = 0:2*pi/n_pts:2*pi-pi/n_pts; %Defines theta incremented 0->2*pi
x_z = xc + rc*cos(theta); %X location in Z-plane
y_z = yc + rc*sin(theta); %Y location in Z-plane
u_z = U*cos(alpha)... %X velocity in Z-plane
 - (U.*cos(2.*theta - alpha)) - Gamma.*sin(theta)./(2.*pi.*rc);
v_z = U*sin(alpha)... %Y velocity in Z-plane
 - (U.*sin(2.*theta - alpha)) + Gamma.*cos(theta)./(2.*pi.*rc);
z_z = x_z + i.*y_z; %Complex velocoity in Z-plane
%Transform Surface Locations & Velocities to Zeta Plane
Zeta = lam*a.*... %Complex coords Zeta = f(z)
 ((z_z+a).^lam + (z_z-a).^lam)./((z_z+a).^lam - (z_z-a).^lam);
x_zeta = real(Zeta); %X location in Zeta-plane
y_zeta = imag(Zeta); %Y location in Zeta-plane
dzeta_dz = (4*(lam*a)^2)... %D(Zeta)/Dz
 (((z_z-a).^(lam-1)) . ((z_z+a).^(lam-1)))...
 ./((((z_z+a).^lam) - ((z_z-a).^lam)).^2);
vel_zeta = (u_z - i.*v_z)./dzeta_dz; %[u-iv]_zeta = [u-iv]_x/Dzeta/Dz
u_zeta = real(vel_zeta); %X velocity in Zeta-plane
v_zeta = -imag(vel_zeta); %Y velocity in Zeta-plane
q_zeta = sqrt(u_zeta.^2 + v_zeta.^2);%Zeta-Velocity Magnitude
cp_zeta = 1-(q_zeta./U).^2; %Zeta pressure coefficient

%Create plot of Zeta plane

 44

figure(); grid on;hold on;axis equal;orient landscape;
xlim([-range range]);ylim([-range+1 range-1]);
title({'\zeta-Plane';'Potential Flow Around Mapped Foil'});
plot(Zeta_circ, 'k')
%plot(Zeta_circ, 'k.')
%Find Z coodinates in Z-Plane based on required spacing in Zeta-plane
%in order to calculate U-V components in mesh spacing for streamline plot
[Xgrd_zeta,Ygrd_zeta] = ... %Create location mesh
 meshgrid(-range:div:range,-range:div:range);
Zetagrd = Xgrd_zeta + i*Ygrd_zeta;
Z_grd = -a.*((((Zetagrd-lam)./(Zetagrd+lam)).^(1/lam))+1)...
 ./((((Zetagrd-lam)./(Zetagrd+lam)).^(1/lam))-1);
X_grd = real(Z_grd);
Y_grd = imag(Z_grd);
r_grd = sqrt((X_grd-xc).^2 + (Y_grd-yc).^2);%Radius at mesh locations
%Calculate angle theta to mesh locations, 0 <= theta < 2*pi
for j=1:length(X_grd)
 for k=1:length(X_grd)
 if X_grd(j,k) >= xc
 theta_grd(j,k) = atan((Y_grd(j,k)-yc)/(X_grd(j,k)-xc));
 elseif X(j,k) < xc
 theta_grd(j,k) = atan((Y_grd(j,k)-yc)/(X_grd(j,k)-xc)) + pi;
 end
 end
end
%Calculate velocity components u, v based on potential theory
u_grd_z = U*cos(alpha) - (U.*((rc./r_grd).^2).*cos(2.*theta_grd - alpha))...
 - Gamma.*sin(theta_grd)./(2.*pi.*r_grd);
v_grd_z = U*sin(alpha) - (U.*((rc./r_grd).^2).*sin(2.*theta_grd - alpha))...
 + Gamma.*cos(theta_grd)./(2.*pi.*r_grd);
for j = 1:length(X_grd)
 for k = 1:length(X_grd)
 if (X_grd(j,k)-xc)^2 + (Y_grd(j,k)-yc)^2 < rc^2
 u_grd_z(j,k) = 0;
 v_grd_z(j,k) = 0;
 end
 end
end
dzeta_dz_grd = (4*(lam*a)^2)... %D(Zeta)/Dz
 (((Z_grd-a).^(lam-1)) . ((Z_grd+a).^(lam-1)))...
 ./((((Z_grd+a).^lam) - ((Z_grd-a).^lam)).^2);
vel_grd_zeta = (u_grd_z - i.*v_grd_z)./dzeta_dz_grd;
u_zeta_grd = real(vel_grd_zeta); %X velocity in Zeta-plane
v_zeta_grd = -imag(vel_grd_zeta); %Y velocity in Zeta-plane
%quiver(Xgrd_zeta ,Ygrd_zeta, u_zeta_grd, v_zeta_grd, 'g')%Plots Vectors
streamline(stream2(Xgrd_zeta ,Ygrd_zeta, u_zeta_grd, v_zeta_grd,...
 strm_strt*ones(No_strm,1),-range:2*range/(No_strm-1):range));%Plots
streamlines
%Create and save plot of minimum pressure distribution
figure(); hold on; grid on; xlim([0 1])
xlabel('Chordwise Position (X/C)')
ylabel('Negative of Pressure Coefficient (-C_p)')
title(['Pressure Distribution for \alpha = ', num2str(alpha_deg),'\circ'])
plot((x_zeta-min(x_zeta))./(max(x_zeta)-min(x_zeta)), -cp_zeta, 'k.-')
saveas(gcf,'Trefftz.fig')
close();
%Scales foil to Chord lenght of 1.

 45

chord = (max(x_zeta)-min(x_zeta));
x_zeta_scl = (x_zeta-min(x_zeta))./(max(x_zeta)-min(x_zeta));
y_zeta_scl = y_zeta./(max(x_zeta)-min(x_zeta));
%Locates nose location and index X and Y.
[x_nose, i_nose] = min(x_zeta_scl);
[x_tail, i_tail] = max(x_zeta_scl);
%Breaks scaled locations into upper and lower surfaces
x_US = [x_zeta_scl(i_tail:end) x_zeta_scl(1:i_nose)];
y_US = [y_zeta_scl(i_tail:end) y_zeta_scl(1:i_nose)];
x_LS = x_zeta_scl(i_nose:i_tail);
y_LS = y_zeta_scl(i_nose:i_tail);
%Defines X locations, cos-spaced, to be used for output
x_spl = (1+cos(0:2*pi/(out_pts-1):2*pi))/2;
%Splines Upper and Lower surfaces and evaluates at x_spl locations
spl_US = spline(x_US, y_US);
spl_LS = spline(x_LS, y_LS);
y_spl = [ppval(spl_US, x_spl(1:ceil(out_pts/2))) ...
 ppval(spl_LS, x_spl(ceil(out_pts/2)+1:end))];
%Summary plot to compare input, output, and spline functions
figure();hold on; axis equal;
fnplt(spl_US, 'r')
fnplt(spl_LS, 'g')
plot(x_US, y_US, 'k.')
plot(x_LS, y_LS, 'k.')
plot(x_spl, y_spl, 'bo')
legend('US Spline', 'LS Spline', 'US Data', 'LS Data', 'Output Points')
%Saves splined output point and angle of attack to file x_output
save('x_output', 'x_spl', 'y_spl', 'alpha_deg')
%Writes splined output X and Y locations to data file trefxy
fid = fopen('trefxy', 'w');
for i =1:length(x_spl)
 fprintf(fid, '%12.8f %12.8f\n', x_spl(i), y_spl(i));
end
fclose(fid);
%run brockthesis %Starts Brockett's thesis for comparison of data.

 46

Appendix B: MATLAB Code of Brockett’s Work
(Brockett.m)

%ADAPTATION OF BROCKETT'S THESIS WORK. Code Modified by Chris Peterson.
%Code allows user specified input, and plots pressure distribution for
%given input.

clear all; clc;
prnt2scrn = 1; %Turn on (1) or off (0) screen output

run CfmlInput %Allows user specified setting and data input.

%Preallocate memory for Improved Speed
CO = zeros(1,18);SO = zeros(1,18);X = zeros(1,18);ANTRP=zeros(1,12);
CNT=zeros(1,12);XA=zeros(1,12);SNT=zeros(1,12);COL=zeros(1,17);
COT=zeros(1,17);Z1=zeros(12,17);Z2=zeros(12,17);Z3=zeros(12,17);
Z4=zeros(12,17);EE=zeros(1,NX);DD=zeros(1,37);

if IDEN == 0
 SY=zeros(1,19);
 VL=zeros(1,19);
elseif IDEN > 0
 SY=zeros(1,36);
 VL=zeros(1,36);
end

%
% CALCULATION OF CONSTANTS
%
AN=18.0;
for I=1:18
 TA=(I-1)*.17453293;
 CO(I)=cos(TA);
 SO(I)=sin(TA);
 X(I)=.5*(1.+CO(I));
end
SO(19)=0.;
CO(19)=-1.;
X(19)=0.;
for I=20:37;
 IA=38-I;
 X(I)=X(IA);
 CO(I)=CO(IA);
 SO(I)=-SO(IA);
end

% INTERMEDIATE POINTS AND CORRESPOINDING X VALUES

for I=1:9
 ANTRP(I)=(I)*.017453293;
end
ANTRP(10)=12.5*.017453293;
ANTRP(11)=15.0*.017453293;

 47

ANTRP(12)=17.5*.017453293;
for I=1:12
 CNT(I)=cos(ANTRP(I));
 XA(I)=.5*(1-CNT(I));
 SNT(I)=sin(ANTRP(I));
end

% CALCULATION OF VECTORS USED TO OBTAIN SLOPE AND VELOCITY

for I=1:2:17
 COL(I) = -1/(AN*(1-CO(I+1)));
end

COEF = 1;
for I=1:17
 COEF = -COEF;
 COT(I) = COEF*SO(I+1)/(1-CO(I+1))*0.5;
end

for I=1:12
 COEF = 1;
 CNNT = cos(18*ANTRP(I));
 SNNT = sin(18*ANTRP(I));
 for J=1:17
 COEF=-COEF;
 TA = (-CNT(I)-CO(J+1));
 TB = (COEF*CNNT-1)/36;
 TC = COEF*SNNT*0.5;
 TD = TA*TA;
 TE = (1+CO(J+1)*CNT(I))/TD;
 TF = SO(J+1)*SNT(I)/TD;
 TD = COEF*CNNT*0.5/TA;
 Z1(I,J) = TB*TF+TC*SO(J+1)/TA;
 Z2(I,J) = TB*TE+TC*SNT(I)/TA;
 Z3(I,J) = (TC/18.)*TF-TD*SO(J+1);
 Z4(I,J) = (TC/18.)*TE-TD*SNT(I);
 end
end
% READ INPUT (REPLACED WITH FUNCTION ARGS)
%
%C ARBITRARY INPUT SUBROUTINE
%
if IPM > 0
 if prnt2scrn == 1
 fprintf(' INPUT AT ARBITRARY X VALUES\n')
 end
 if IDEN > 0 %(Not symmetric)
 if ILK > 0 %(:INPUT TAU, RHO, RHO)
 if prnt2scrn == 1
 fprintf(' THICKNESS CAMBER NOSE RADIUS\n')
 fprintf('%12.6f',TAO,F,RHO)
 fprintf('\n\n')
 fprintf(' X YT YC DYC/DX\n') %
PRINT 31
 end
 RHO = RHO*TAO^2;

 48

 for I=1:NX
 AT = AT_in(I);
 YT = YT_in(I);
 YC = YC_in(I);
 YCP = YCP_in(I);
 IA=2*NX-I;
 if AT > 0
 if YCP ~= 0
 THT = atan(YCP*F);
 SA = sin(THT)*YT*TAO;
 CA = cos(THT)*YT*TAO;
 CC(I) = AT-SA;
 Y(I) = YC*F+CA;
 CC(IA) = AT+SA;
 Y(IA) = YC*F-CA;
 elseif YCP == 0
 Y(I) = YC*F+YT*TAO;
 Y(IA) = YC*F-YT*TAO;
 CC(I) = AT;
 CC(IA) = AT;
 end
 elseif AT == 0
 THT = atan(YCP*F);
 Y(I)= RHO*sin(THT);
 YN = Y(I);
 CC(I)= -RHO*(1.-cos(THT));
 XN = CC(I);
 end
 if prnt2scrn == 1
 fprintf('%12.6f',AT,YT,YC,YCP)
 fprintf('\n')
 end
 end
 NX = 2*NX-1;
 elseif ILK == 0
 if prnt2scrn == 1
 fprintf(' X Y\n')
 fprintf('%12.6f', XN, YN)
 fprintf('\n')
 for I = 1:NX
 CC(I)=CC_in(I);
 Y(I) =Y_in(I);
 fprintf('%12.6f',CC(I),Y(I))
 fprintf('\n')
 end
 else
 for I = 1:NX
 CC(I)=CC_in(I);
 Y(I) =Y_in(I);
 end
 end
 end
 IMS = 37;
 B = 1-XN;
 AWK = atan(YN/B);
 SA = sin(AWK);
 CA = cos(AWK);

 49

 AWK = AWK*180/pi;
 if prnt2scrn == 1
 fprintf('\n\nROTATED AND SHRUNK INPUT\n')
 fprintf('ANGLE OF ROTATION= %9.6f DEG,\n', AWK)
 fprintf(' NOTE: THIS ANGLE WILL BE ADDED TO EACH OF THE INPUT
ANGLES\n')
 fprintf(' X Y PHI,DEG\n')
 end
 for I = 1:NX
 CC(I) = (CC(I)-XN)/B;
 Y(I) = (Y(I)-YN)/B;
 ALTER = CC(I);
 CC(I) = (CC(I)*CA-Y(I)*SA)*CA;
 Y(I) = (Y(I)*CA+ALTER*SA)*CA;
 end
 ND = NX-1;
 A = (NX+1)/2;
 for I=2:ND
 B = I;
 EE(I) = 2*CC(I)-1;
 if EE(I) ~= 0
 EE(I)=atan(sqrt(abs(1-EE(I)^2))/EE(I));
 if (B-A) <= 0
 if (CC(I)-.5) < 0
 EE(I) = EE(I)+pi;
 end
 elseif (B-A) > 0
 if (CC(I)-0.5) < 0
 EE(I) = pi+abs(EE(I));
 elseif (CC(I)-0.5) > 0
 EE(I)=2*pi - EE(I);
 elseif (CC(I)-0.5) == 0
 EE(I)=1.5*pi;
 end
 end
 elseif EE(I) == 0
 if (B-A) == 0
 error('ERRONEOUS INPUT')
 elseif (B-A) < 0;
 EE(I)=pi/2;
 elseif (B-A) > 0;
 EE(I)=1.5*pi;
 end
 end
 end
 EE(1)=0;
 EE(NX)=2*pi;
 for I=1:NX
 A=EE(I)*180/pi;
 if prnt2scrn == 1
 fprintf('%12.6f',CC(I),Y(I),A)
 fprintf('\n')
 end
 end
 elseif IDEN == 0
 if prnt2scrn == 1
 fprintf(' X Y PHI,DEG\n')

 50

 end
 ND=NX-1;
 for I=1:NX
 CC(I)=CC_in(I);
 Y(I)=Y_in(I);
 end
 EE(1) =0;
 if prnt2scrn == 1
 fprintf(' X Y PHI,DEG\n')
 fprintf('%12.6f',CC(1),Y(1),EE(1))
 fprintf('\n')
 end
 for I = 2:ND
 EE(I) = 2*CC(I)-1;
 if EE(I) ~= 0
 EE(I) = atan(sqrt(abs(1-(EE(I))^2))/EE(I));
 if (CC(I)-0.5) < 0
 EE(I) = EE(I)+pi;

 elseif (CC(I)-0.5) == 0
 EE(I) = pi/2;
 end
 elseif EE(I)==0
 EE(I) = pi/2;
 end
 A = EE(I)*180./pi;
 if prnt2scrn == 1
 fprintf('%12.6f',CC(I),Y(I),A)
 fprintf('\n')
 end
 end
 EE(NX) = pi;
 A = 180;
 if prnt2scrn == 1
 fprintf('%12.6f',CC(NX),Y(NX),A)
 fprintf('\n')
 end
 IMS = 19;
 AWK = 0;
 end

 I = 1;
 CC(1) = Y(1);
 R = 0;
 Y1 = Y(2)-Y(1);
 Y2 = Y(3)-Y(1);
 Y3 = Y(4)-Y(1);
 A = (Y1*EE(3)-Y2*EE(2))/(EE(2)*EE(3)*(EE(2)-EE(3)));
 B = (Y2*EE(4)-Y3*EE(3))/(EE(4)*EE(3)*(EE(3)-EE(4)));
 A3 = (A-B)/(EE(2)-EE(4));
 A2 = A-A3*(EE(2)+EE(3));
 A1 = Y1/EE(2)-EE(2)*(A2+A3+EE(2));
 R = R + pi/18;
 I = I + 1;
 CC(I) = Y(1)+R*(A1+R*(A2+R*A3));
 if (R-EE(2)) <= 0

 51

 while (R-EE(2)) <= 0
 R = R + pi/18;
 I = I + 1;
 CC(I) = Y(1)+R*(A1+R*(A2+R*A3));
 end
 end
 NP = NX-2;
 Y1 = Y(ND)-Y(NX);
 Y2 = Y(NP)-Y(NX);
 N3 = NX-3;
 Y3 = Y(N3)-Y(NX);
 R = 0;
 X1 = EE(ND)-EE(NX);
 X2 = EE(NP)-EE(NX);
 X3 = EE(N3)-EE(NX);
 A = (Y1*X2-Y2*X1)/(X1*X2*(X1-X2));
 B = (Y2*X3-Y3*X2)/(X3*X2*(X2-X3));
 A3 = (A-B)/(X1-X3);
 A2 = A-A3*(X1+X2);
 A1 = Y1/X1-X1*(A2+A3*X1);
 I = IMS;
 R = R-pi/18;
 I = I-1;
 CC(I) = Y(NX)+R*(A1+R*(A2+R*A3));
 A = R+EE(NX);
 if (A-EE(ND)) > 0
 while (A-EE(ND)) > 0
 R = R-pi/18;
 I = I-1;
 CC(I) = Y(NX)+R*(A1+R*(A2+R*A3));
 A = R+EE(NX);
 end
 end
 for I = 2:IMS
 R = (I-1)*pi/18;
 for J = 2:NP
 if (R-EE(J)) > 0
 if (R-EE(J+1)) < 0
 JP = J-1;
 X1 = EE(J)-EE(JP);
 X2 = EE(J+1)-EE(JP);
 X3 = EE(J+2)-EE(JP);
 Y1 = Y(J)-Y(JP);
 Y2 = Y(J+1)-Y(JP);
 Y3 = Y(J+2)-Y(JP);
 A = (Y1*X2-Y2*X1)/(X1*X2*(X1-X2));
 B = (Y2*X3-Y3*X2)/(X3*X2*(X2-X3));
 A3 = (A-B)/(X1-X3);
 A2 = A-A3*(X1+X2);
 A1 = Y1/X1-X1*(A2+A3*X1);
 R = R-EE(JP);
 CC(I) = Y(JP)+R*(A1+R*(A2+R*A3));
 end
 elseif (R-EE(J)) == 0
 CC(I) = Y(J);
 end
 end

 52

 end
 if IDEN == 0
 for I = 1:18
 IA = 38-I;
 CC(IA) = -CC(I);
 end
 end
 CC(IMS) = Y(NX);
 if prnt2scrn == 1
 fprintf('\n\nINPUT AT REQUIRED X VALUES\n')
 fprintf(' INDEX X YU YL\n')
 end
 for I = 1:19
 IA = 38-I;
 Y(I) = CC(I);
 Y(IA) = CC(IA);
 J = I-1;
 Input_at_reqd_x(I,:) = [J X(I) Y(I) Y(IA)];
 if prnt2scrn == 1
 fprintf('%12.6f',J,X(I),Y(I),Y(IA))
 fprintf('\n');
 end
 end
 Y(19) = 0;
 if prnt2scrn == 1
 fprintf(' NOTE: LE AND TE ORDINATES SET=0\n')
 end
 ABA = Y(1);
 Y(1) = 0;
elseif IPM == 0
 AWK = 0;
 if IDEN == 0
 Y(19) = 0;
 ABA = Y(1);
 Y(1) = 0;
 for I = 1:18
 IA = 38-I;
 Y(IA) = -Y(I);
 end
 elseif IDEN > 0
 Y(37) = -Y(1);
 ABA = Y(1);
 Y(1) = 0;
 end
end
%
% CALCULATION OF PROFILE SLOPE AND COTANGENT INTEGRAL
%
if IDEN < 0
 ERROR('ERRONEOUS INPUT');
elseif IDEN == 0
 MAD = 19;
elseif IDEN > 0
 MAD = 36;
end

for I=1:MAD

 53

 SY(I) = 0;
 VL(I) = Y(I)*9;
 for J=1:17
 LA = I-J;
 if LA <= 0;
 LA = 36+LA;
 end
 KB=I+J;
 if (KB-36) > 0;
 KB = KB - 36;
 end
 SY(I) = SY(I) + (Y(LA) - Y(KB))*COT(J);
 VL(I) = VL(I) + (Y(LA) + Y(KB))*COL(J);
 end
end

VL(37) = VL(1);
SY(37) = SY(1);
if IDEN == 0
 for I = 2:18
 IA = 38-I;
 VL(IA) = -VL(I);
 SY(IA) = SY(I);
 end
end
Y(1)=ABA;
%
% CALCULATION OF BASE PROFILE VELOCITY AND INCREMENT DUE TO ANGLE OF
% ATTACK
if prnt2scrn == 1
 fprintf('\n\n PROFILE CONSTANTS\n\n');
 fprintf('\t X\t\t\tY\t\t\tC\t\t\tD\t\t\tE\t\t\t DY/DPHI\n');
end
for I=1:37
 D2 = sqrt(SY(I)^2 + (SO(I)^2)/4.);
 CC(I) = (VL(1)-VL(I)-SO(I)/2.)/D2;
 DD(I) = (SY(I)-SY(1)+(CO(I)-1)/2)/D2;
 AAAAA = (X(I)-1)/(2*D2)+X(I)*DD(I);
 TA = -CC(I);
 TB = -DD(I);
 EE(I) = D2;
 Profile_Const(I,:) = [X(I) Y(I) TA TB AAAAA SY(I)];
 if prnt2scrn == 1
 fprintf('%12.6f %12.6f %12.6f %12.6f %12.6f %12.6f\n',...
 X(I),Y(I),TA,TB,AAAAA,SY(I));
 end
end
if prnt2scrn == 1
 fprintf('\n\n NON-DIMENSIONAL VELOCITY, V=(C*cos(ALFA)+D*sin(ALFA))*(1-
/+DELTA*sqrt(X-X^2))+DELTA*E)\n')
end
%
% CALCULATION OF LIFT CURVE SLOPE AND ANGLE OF ZERO LIFT,THEORY
%
P1 = (1+2*SY(1))^2+4*VL(1)^2;
P = sqrt(P1);
AOL = atan(2*VL(1)/(1+2*SY(1)));

 54

AXL = AOL*180/pi;
if prnt2scrn == 1
 fprintf(' DCL/D(ALPHA)/2PI (THEORY)=%10.6f\n ANGLE,CL=0 (THEORY) =%10.6f
DEG \n\n\n\n'...
 ,P, AXL)
end
%
% CALCULATION OF BASE PROFILE VELOCITY AND INCREMENT DUE TO ANGLE OF
% ATTACK AT INTERMEDIATE POINTS
%
if prnt2scrn == 1
 fprintf(' PROFILE CONSTANTS\n\n')
 fprintf(' INTERMEDIATE VALUES\n')
 fprintf(' UPPER SURFACE\n')
 fprintf('\t\tX\t\t\tC \t\t\tD \t\t\tE \t\tDY/DPHI \n')
end

for I=1:12
 CD1 = 0.0;
 CD2 = 0.0;
 CD3 = 0.0;
 CD4 = 0.0;
 for J=1:17
 JC = 37-J;
 YT = Y(J+1)-Y(JC);
 YC = Y(J+1)+Y(JC);
 CD1 = CD1+YT*Z1(I,J);
 CD2 = CD2+YC*Z2(I,J);
 CD3 = CD3+YT*Z3(I,J);
 CD4 = CD4+YC*Z4(I,J);
 end
 DYU = CD3+CD4;
 DYL = CD3-CD4;
 CTU = CD1+CD2;
 CTL = -CD1+CD2;
 TA = SNT(I)*SNT(I)*.25;
 TB = .5*(1.+CNT(I));
 ANTRP(I)= DYL;
 E1(1,I) = sqrt(DYU*DYU+TA);
 E1(2,I) = sqrt(DYL*DYL+TA);
 C1(1,I) = (VL(1)-CTU-SNT(I)*.5)/E1(1,I);
 C1(2,I) = (VL(1)-CTL+SNT(I)*.5)/E1(2,I);
 D1(1,I) = (DYU-SY(1)-TB)/E1(1,I);
 D1(2,I) = (DYL-SY(1)-TB)/E1(2,I);
 AAAAA = (XA(I)-1.)/(2.*E1(1,I))+XA(I)*D1(1,I);
 TA = -C1(1,I);
 TB = -D1(1,I);
 Profile_Const_INT_U(I,:) = [XA(I) TA TB AAAAA DYU];
 if prnt2scrn == 1
 fprintf('%12.6f%12.6f%12.6f%12.6f%12.6f\n',...
 XA(I),TA,TB,AAAAA,DYU)
 end
end
if prnt2scrn == 1
 fprintf('\n\n LOWER SURFACE\n')
 fprintf('\t\tX\t\t\tC \t\t\tD \t\t\tE \t\tDY/DPHI \n')
end

 55

for I=1:12
 AAAAA = (XA(I)-1.)/(2.*E1(2,I))+XA(I)*D1(2,I);
 TA = -C1(2,I);
 TB = -D1(2,I);
 Profile_Const_INT_L(I,:) = [XA(I) TA TB AAAAA ANTRP(I)];
 if prnt2scrn == 1
 fprintf('%12.6f',XA(I),TA,TB,AAAAA,ANTRP(I))
 fprintf('\n')
 end
end

if ICL == 0
 AOLE = AOLE+AWK;
 AXL = AOLE*.017453293;
end
%
% CALCULATION OF THEORETICAL AND DISTORTED PRESSURE DISTRIBUTION
%
if IPMIN > 0
 if prnt2scrn == 1
 fprintf('\n\n MINIMUM PRESSURES\n')
 fprintf(' ETA = %8.6f,',ETA)
 fprintf(' ALFA(CL=0) = %10.6f\n\n',AOLE)
 fprintf(' ALFA CL CP MIN MAX VELOC X
CM(X=0.25)\n')
 end
end
for I=1:JA
 if IPMIN == 0
 if prnt2scrn==1
 fprintf('\n\n PRESSURE DISTRIBUTION\n')
 end
 if IDEN == 0
 if prnt2scrn == 1
 fprintf(' SYMMETRICAL PROFILE\n\n')
 end
 elseif IDEN > 0
 if prnt2scrn == 1
 fprintf(' NON-SYMMETRICAL PROFILE\n\n')
 end
 end
 if prnt2scrn == 1
 fprintf(' ALFA CL DELTA sin(ALFA) LIFT
SLOPE ALFA,CL=0\n')
 end
 end
 DMALFA = ALFA(I)+AWK;
 ANG = DMALFA*pi/180;
 if ICL ~= 0
 CL = CLE(I);
 elseif ICL == 0
 CL = 2*pi*ETA*(ANG-AXL);
 end
 DEL = ANG - AOL - atan(CL/sqrt(39.478418*P1 - CL^2));
 SA = sin(ANG);
 CA = cos(ANG);
 if IPMIN == 0

 56

 if prnt2scrn == 1
 fprintf('%12.6f',DMALFA,CL,DEL,SA,ETA,AOLE)
 fprintf('\n')
 fprintf('\n\n X POTNL VELOC VISC INCRM VISC VELOC
POTNL P/Q VISC P/Q\n')
 end
 end
 APG = ANG-DEL;
 CAP = cos(APG);
 SAP = sin(APG);
 CLINT = 0.0;
 CDINT = 0.0;
 CMXINT = 0.0;
 CMYINT = 0.0;
 SIGMA = 0.0;
 for J=1:37
 APG = ANG-DEL*X(J);
 CAV = cos(APG);
 SAV = sin(APG);
 VELP = abs(CC(J)*CA+DD(J)*SA);
 VELV = (1-DEL*SO(J)/2.)*((CC(J)-VL(1)/EE(J))*CAV+(DD(J)...
 +(.5+SY(1))/EE(J))*SAV+VL(1)/EE(J)*CAP-(.5+SY(1))/EE(J)*SAP);
 VELV = abs(VELV);
 ANCR = VELV-VELP;
 PRESP = 1-(VELP)^2;
 PRESV = 1-(VELV)^2;
 ABD = pi/AN*PRESV;
 ABC = ABD*SO(J)/2;
 CMXINT = CMXINT+ABC*(X(J)-.25);
 if IPMIN == 0
 CLINT = CLINT-ABC;
 if (J-1) > 0
 ABD = ABD*SY(J);
 CDINT = CDINT-ABD;
 if (J-37) < 0
 CMYINT = CMYINT-ABD*Y(J);
 end
 end
 Press_Dist(J,:) = [X(J) VELP ANCR VELV PRESP PRESV];
 if prnt2scrn == 1
 fprintf('%12.6f',X(J),VELP,ANCR,VELV,PRESP,PRESV)
 fprintf('\n')
 end
 elseif IPMIN > 0
 if (SIGMA-PRESV) >=0
 SIGMA = PRESV;
 XMIN = X(J);
 VMAX = VELV;
 end
 end
 if (37-J) == 0
 if IPMIN == 0
 if prnt2scrn == 1
 fprintf('\nINTEGRATED CN=%10.6f\n',CLINT)
% 4508 PRINT 17,CLINT
 fprintf('INTEGRATED CC=%10.6f\n',CDINT)
% PRINT 18,CDINT

 57

 fprintf('INTEGRATED CM(X)=%10.6f, CW ABT
X=0.25\n',CMXINT) % PRINT 19,CMXINT
 fprintf('INTEGRATED CM(Y)=%10.6f, CW ABT Y=0\n',CMYINT)
% PRINT 20,CMYINT
%
% CALCULATION AT INTERMEDIATE POINTS
%
 fprintf('\n\n PRESSURE
DISTRIBUTION\n\n') % PRINT 8
 fprintf(' ALFA CL DELTA sin(ALFA)
LIFT SLOPE ALFA,CL=0\n') % PRINT 12
 fprintf('%12.6f', DMALFA,CL,DEL,SA,ETA,AOLE)
% PRINT 2, DMALFA,CL,DEL,SA,ETA,AOLE
 fprintf('\n\n INTERMEDIATE
VALUES\n') % PRINT 14
% C
% C UPPER SURFACE NOSE VELOCITY
% C
 fprintf('\n UPPER SURFACE \n')
% PRINT 15
 fprintf(' X POTNL VELOC VISC INCRM VISC VELOC
POTNL P/Q VISC P/Q \n') % PRINT 13
 end
 end
 for K=1:12
 APG = ANG-DEL*XA(K);
 CAV = cos(APG);
 SAV = sin(APG);
 VELP = abs(C1(1,K)*CA+D1(1,K)*SA);
 VELV = abs((1.-DEL*SNT(K)/2.)*((C1(1,K)-VL(1)...
 /E1(1,K))*CAV+(D1(1,K)+(.5+SY(1))/E1(1,K))*SAV+...
 (VL(1)*CAP-(.5+SY(1))*SAP)/E1(1,K)));
 ANCR = VELV-VELP;
 PRESP = 1 -(VELP)^2;
 PRESV = 1 -(VELV)^2;
 if IPMIN > 0
 if (SIGMA-PRESV) >= 0
 SIGMA = PRESV;
 XMIN = XA(K);
 VMAX = VELV;
 end
 elseif IPMIN == 0
 Press_Dist_INT_U(K,:) = [XA(K) VELP ANCR VELV PRESP
PRESV];
 if prnt2scrn == 1
 fprintf('%12.6f', XA(K),VELP,ANCR,VELV,PRESP,PRESV)
 fprintf('\n')
 end
 end
 end
%
% LOWER SURFACE NOSE VELOCITY
%
 if IPMIN == 0
 if prnt2scrn == 1
 fprintf('\n LOWER SURFACE\n')

 58

 fprintf(' X POTNL VELOC VISC INCRM VISC VELOC
POTNL P/Q VISC P/Q\n')
 end
 end
 for K=1:12
 APG = ANG-DEL*XA(K);
 CAV = cos(APG);
 SAV = sin(APG);
 VELP = abs(C1(2,K)*CA+D1(2,K)*SA);
 VELV = abs((1.+DEL*SNT(K)/2.)*((C1(2,K)-VL(1)...
 /E1(2,K))*CAV+(D1(2,K)+(.5+SY(1))/E1(2,K))...
 *SAV+(VL(1)*CAP-(.5+SY(1))*SAP)/E1(2,K)));
 ANCR = VELV - VELP;
 PRESP = 1-VELP^2;
 PRESV = 1-VELV^2;

 if IPMIN > 0
 if (SIGMA-PRESV) >= 0
 SIGMA = PRESV;
 XMIN = XA(K);
 VMAX = VELV;
 end
 elseif IPMIN == 0
 Press_Dist_INT_L(K,:) = [XA(K) VELP ANCR VELV PRESP
PRESV];
 if prnt2scrn == 1
 fprintf('%12.6f',XA(K),VELP,ANCR,VELV,PRESP,PRESV)
 fprintf('\n')
 end
 end
 end
 if IPMIN > 0
 Min_Press(I,:) = [DMALFA CL SIGMA VMAX XMIN CMXINT];
 if prnt2scrn == 1
 fprintf('%12.6f',DMALFA,CL,SIGMA,VMAX,XMIN,CMXINT)
 fprintf('\n')
 end
 end
 end
 end
end
% END OF BROCKETT'S CODE

% Combine Profile Constant Data in Order
i = 1;
j = length(Profile_Const_INT_U);
step = 1;
while j>0 && i<length(Profile_Const)
 A = Profile_Const(i,1);
 B = Profile_Const_INT_U(j,1);
 if A > B
 Profile_Comb(step,:) = Profile_Const(i,:);
 i = i + 1;
 step = step + 1;
 elseif B > A

 59

 Profile_Comb(step,:) = [Profile_Const_INT_U(j,1) 0
Profile_Const_INT_U(j,2:end)];
 j = j -1;
 step = step + 1;
 end
end
j = 1;
while j <= length(Profile_Const_INT_L) || i <= length(Profile_Const)
 if B < A && j <= length(Profile_Const_INT_L)
 Profile_Comb(step,:) = [Profile_Const_INT_L(j,1) 0
Profile_Const_INT_L(j,2:end)];
 j = j + 1;
 if j <= length(Profile_Const_INT_L)
 B = Profile_Const_INT_L(j,1);
 end
 step = step + 1;
 elseif A < B || j > length(Profile_Const_INT_L)
 Profile_Comb(step,:) = Profile_Const(i,:);
 i = i + 1;
 if i <= length(Profile_Const)
 A = Profile_Const(i,1);
 end
 step = step + 1;
 end
end

% Combine Pressure Distribution Data in Order
if IPMIN == 0
 i = 1;
 j = length(Press_Dist_INT_U);
 step = 1;
 while j>0 && i<length(Press_Dist)
 A = Press_Dist(i,1);
 B = Press_Dist_INT_U(j,1);
 if A > B
 Press_Comb(step,:) = Press_Dist(i,:);
 i = i + 1;
 step = step + 1;
 elseif B > A
 Press_Comb(step,:) = Press_Dist_INT_U(j,:);
 j = j -1;
 step = step + 1;
 end
 end
 j = 1;
 while j <= length(Press_Dist_INT_L) || i <= length(Press_Dist)
 if B < A && j <= length(Press_Dist_INT_L)
 Press_Comb(step,:) = Press_Dist_INT_L(j,:);
 j = j + 1;
 if j <= length(Press_Dist_INT_L)
 B = Press_Dist_INT_L(j,1);
 end
 step = step + 1;
 elseif A < B || j > length(Press_Dist_INT_L)
 Press_Comb(step,:) = Press_Dist(i,:);
 i = i + 1;
 if i <= length(Press_Dist)

 60

 A = Press_Dist(i,1);
 end
 step = step + 1;
 end
 end

end

% Calls XFOIL calculate pressure distribution and imports data
cmd = ['xfoil.exe LOAD trefxy OPER ALFA ', num2str(ALFA),...
 ' OPER CPWR CPX'];
system(cmd);
fid = fopen('CPX');
xfoil_data_in = textscan(fid, '%f64 %f64', 'headerlines', 1);
fclose(fid);
xfoil_x = xfoil_data_in{1};
xfoil_cp = xfoil_data_in{2};

% Plots Data from Brockett and Xfoil on same graph as Trefftz.
open('Trefftz.fig')
plot(Press_Comb(:,1), -Press_Comb(:,5), 'ro-')
plot(Press_Comb(:,1), -Press_Comb(:,6), 'r.-')
plot(xfoil_x, -xfoil_cp, 'bx-')
legend('Conformal Transformation','Brockett Method (Inviscid)',...
 'Brockett Method (Viscid)','XFOIL Calc')
savefile = ['K-T,alfa=',num2str(ALFA),];
saveas(gcf, savefile);

 61

Appendix C: Brockett.m Variable Descriptions
Function variables are specified as those variable that instruct the MATLAB version

of Brockett’s work how to process the data, which data will be input, and how the

data is formatted. The following paragraph provide a brief description of these

variables, and how they are used in Brockett.m

JA: Specifies the number of angles of attack that will be calculated. Although not

specified directly by the user, the scripts in Appendix C: calculate this value based

on the number of inputs for the ALFA vector. It is recommended that multiple

angles of attack be processed individually, since output for multiple angles is only

printed to the screen.

KA: This variable was used originally by Brockett for processing multiple jobs. This

functionality is not used in the MATLAB version. Separate jobs are specified by the

appropriate script file (i.e. ARB_IN.m, REQ_IN.m, etc), in which the use specifies

the job parameters. The job specification script is specified by the “run” command

in the beginning of Brockett.m.

IPMIN: Specifies whether or not minimum pressure distribution data will be

reported. Should normally be set to 0. Plotting and screen output will not be

available if minimum pressure data is not calculated. If screen output is not desired,

use the ‘print2scr’ variable below.

ALFA: Vector of angles of attack to be calculated. Normally a single value. Note:

If multiple angles of attack are specified, output for each angle of attack will be only

to screen in tabular format. Plots for each angle of attack will not be generated.

IDEN: Specifies whether input data points are for a symmetric foil shape.

Symmetric data is designated by IDEN = 0, or non-symmetric IDEN = 1. Symmetric

data can either be in the format of offsets, or camber and thickness data.

 62

IPM: IPM = 0 specifies that ordinate information will be input at required locations.

Required locations are specified by:

36

1
1 cos , 0...18

2 18
m

m m

m
x m

x x

!

"

#$ %
= + =& '

()

=

When input at required station is specified, only the upper surface, Y0 through Y17,

are specified for symmetric foils. All others, Y0 through Y35 are specified. If IPM = 1

(arbitray input locations), user must define the number of locations (NX) that will be

input.

ICL: ICL = 1 if experimental lift coefficient is specified rather that angle of zero lift

(AOLE) and lift-slope curve coefficient (ETA). If ICL = 0, AOLE and ETA must be

set to zero. Otherwise, if ICL = 0, AOLE and ETA must be specified. AOLE and

ETA values do not affect inviscid calculation, and are only used for the empirical

modification to account for viscous effects. If unknown, may be set to 0 for inviscid

calculations.

CLE: If ICL = 1, user must specify experimental lift coefficients corresponding to

input angles of attack (ALFA). ALFA and CLE vector must be of equal length.

ILK: ILK = 0 specifies that offsets will be input in X, Y format. CC is vector of x-

values, and Y is vector of corresponding y-offset values. For symmetric foils, give

only upper surface from trailing edge to nose. Last point must be (0, 0). For non-

symmetric foils, must specify XN and YN which are x and y ordinates of nose

location. Sample scripts locate this point automatically from input vectors CC and

Y. Order for non-symmetric foils must be from trailing edge (1, X.X), along upper

surface to (XN, YN), and back to trailing edge (1.0, X.X).

ILK = 1 specifies that foil surface locations will be specified by thickness ratio

(TAO), camber (F), and leading edge radius (RO). Input required is x-location

(AT_in), thickness value (YT_in), camber value (YC_in), and camberline slope

 63

(YCP_in). AT_in, YT_in, YC_in, and YCP_in start at trailing edge(x=1) and go to

leading edge (x=0), and are of length NX.

foil_name: User specified foil designation. Used for plot legend and/or titles.

 64

Appendix D: Sample Input Scripts for Brockett.m.
REQD_IN.m

% Written by Chris Peterson

% This file inputs data to be processed by MATLABs version of
% Brockett's Thesis program. The data is from fig 3b, pg 67.
% Format is for input at required stations, angle of attack specified

ALFA = 4.09; %ANGLE OF ATTACK
JA = length(ALFA); %NUMBER OF ANGLES
IPMIN = 0; %0:Report Data, 1: No Data
IDEN = 0; %0:SYMM, 1:NONSYMM
IPM = 0; %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS
ICL = 0; %0:USE ALPHA, 1: USE INPUT CLE
AOLE = 0; %Experimental angle of zero lift
ETA = 0.959; %Lift curve-slope coeff
foil_name = 'RAE-101,00-10';

% Y_in is array of ordinates, trailing edge to leading edge along upper
% surface, then leading edge to trailing edge along lower surface. Only
% Yn n=0->17 for symmetric foils. All others n=0->35
Y_in = [0 .00068 .0027 .00599 .01046 .01597 .02236...
 .029345 .03636 .04267 .047445 .04985 .04885...
 .04475 .038405 .03034 .02093 .01071];

% Formats Y for both surfaces
Y = [Y_in 0 fliplr(-Y_in)];

%Plot input
figure(1)
axis equal;
hold on;
plot((1+cos(0:2*pi/36:2*pi))/2, Y, 'g.')
plot((1+cos(0:2*pi/36:2*pi))/2, Y, 'g')
legend('Input to Brockett')
title(foil_name)

NX = 0; %Req'd to set variable EE(used in Arb Input)

 65

ARB_IN.m

% Written by Chris Peterson

% This file inputs data to be processed by the MATLAB version of
% Brockett's Thesis program. The data is from fig 4b, pg 69.
% Format is for arbitrary input stations, non-symmetrical,
% lift coefficient specified

IPMIN = 0; %0:Report Data, 1: No Data
IDEN = 1; %0:SYMM, 1:NONSYMM
IPM = 1; %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS
ICL = 1; %0:USE ALPHA, 1: USE INPUT CLE
 CLE = [-0.14 .15 .44 .73 .97 1.16 1.26 1.34 1.11]; %Lift Coeff
 ETA = 0;
 AOLE = 0;
ILK = 0; %0:INPUT STA X,Y 1:INPUT TAU, RHO, RHO
ALFA = [-7.6 -4.5 -1.5 1.5 4.7 8.0 9.7 11.4 16.2]; %ANGLE OF ATTACK
JA = length(ALFA); %NUMBER OF ANGLES

foil_name = 'CLARK Y, NACA RPT 460';

% Coordinates. Must have same number on upper surface as lower surface.
% For symmetrical foil, give only upper surface (last point 0,0 for
% symmetrical foils)
CC = [1 .992404 .95 .9 .8 .7 .6 .5 .4 .3 .2 .15 .1 .075 .05 .025 .0125...
 0 .0125 .025 .05 .075 .1 .15 .2 .3 .4 .5 .6 .7 .8 .9 .95 .992404 1];
Y = [.0006 .0027 .0144 .0273 .0515 .0728 .0907...
 .1043 .1131 .1162 .1126 .1057 .0950 .0873 .0777...
 .0637 .0532 .0354 .0180 .0136 .0085 .0053...
 .0033 .0008 -.0005 -.0006 -.0006 -.0006 -.0006...
 -.0006 -.0006 -.0006 -.0006 -.0006 -.0006];

[XN, indx] = min(CC);
YN = Y(indx);
NX = length(CC);

%Plot input
figure()
axis equal;
hold on;
plot(CC,Y, 'k.', CC,Y, 'k');
legend('Input to Brockett')
title(foil_name)

 66

KT_IN.m

% Written by Chris Peterson

% This file inputs data to be processed by the MATLAB version of
% Brockett's Thesis code (Brockett.m). This file reads input generated
% by the Karman-Trefftz foil Conformal Transformation script
(CnfrmlTrans.m).

IPMIN = 0; %0:Report Data, 1: No Data
IDEN = 1; %0:SYMM, 1:NONSYMM
IPM = 1; %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS
ICL = 0; %0:USE ALPHA, 1: USE INPUT CLE
if ICL == 0 %Viscous calcs require experimental data input
 AOLE = 0; %Experimental angle of zero lift
 ETA = 0; %Lift-curve slope coefficient
elseif ICL ==1
 CLE = 0; %Experimental lift coefficient
 AOLE = 0; %AOLE and ETA must be set to 0 if ICL = 1
 ETA = 0; %AOLE and ETA must be set to 0 if ICL = 1
end
ILK = 0; %0:INPUT STA X,Y 1:INPUT TAU, RHO, RHO
foil_name = 'Karman-Trefftz';

load('x_output.mat', '-mat');%Opens data generated by CnfrmlTrans.m

CC = x_spl; %Read in x data from K-T foil ordinates
Y = y_spl; %Read in y data from K-T foil ordinates
[XN, xn_ind] = min(CC); %Find nose x location and index
NX = length(CC); %NUMBER OF STATIONS
YN = Y(xn_ind); %Specifies nose y location
ALFA = alpha_deg; %ANGLE OF ATTACK (FOR DESIRED PRESSURE DIST)
JA = length(ALFA); %NUMBER OF ANGLES

%Plot input
figure()
axis equal;
hold on;
plot(CC,Y, 'k.', CC,Y, 'k');
legend('Input to Brockett')
title(foil_name)

%Compare to Karman-Trefftz foil? 1-yes, 0-no
comp2kt = 1; %Opens previous trefftz plot and plots new data

 67

Brock_IN.m

% Written by Chris Peterson

% This file inputs data to be processed by MATLAB version of
% Brockett's Thesis program. The data is from Brockett's published
% minimum pressure envelopes for NACA foils (DTMB Report 1780, pg 14).

IPMIN = 0; %0:Report Data, 1: No Data
IDEN = 1; %0:SYMM, 1:NONSYMM
IPM = 1; %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS
ICL = 1; %0:USE ALPHA, 1: USE INPUT CLE
 ETA = 0;
 AOLE = 0;
ILK = 1; %0:INPUT STA X,Y 1:INPUT TAU, RHO, RHO
ALFA = 0; %ANGLE OF ATTACK
JA = length(ALFA); %NUMBER OF ANGLES

foil_name = 'NACA 66 (Mod), a=0.8';

TAO = 0.12;
F = 0.06;
RHO = .448;
AT_in = fliplr([0 0.007596 0.030154 0.066987 .116978 .178606 .25 .32899
.413176...
 .5 .586824 .671010 .75 .821394 .883022 .933013 .969846 .992404 1]);
YT_in = fliplr([0 .0817 .1608 .2388 .3135 .3807 .4363 .4760 .4972 .4962
.4712...
 .4247 .3612 .2872 .2108 .1402 .0830 .0462 .0333]);
YC_in = fliplr([0 .06006 .18381 .33684 .49874 .65407 .79051 .89831 .96994
1 ...
 .98503 .92306 .81212 .63884 .42227 .23423 .09982 .02365 0]);
YCP_in = fliplr([7.1485 6.6001 4.7712 3.6751 2.8681 2.2096 1.6350 1.1071
.6001 ...
 .0914 -.4448 -1.0483 -1.8132 -3.1892 -3.7243 -3.7425 -3.5148 -3.2028...
 -3.0025]);

NX = length(AT_in);
CLE = 2*pi*(1-0.83*TAO)*(deg2rad(ALFA) + 2.05*F); %Lift Coeff

nose_rad = RHO*TAO^2;

comp2kt = 0;

 68

Appendix E: Brockett.m Sample Output
 PROFILE CONSTANTS
 X Y C D E DY/DPHI
 1.000000 0.000000 0.000000 0.000000 0.000000 0.001998
 0.992404 0.000680 0.890691 0.026481 -0.069870 0.007287
 0.969846 0.002700 0.933471 0.096858 -0.181740 0.015520
 0.933013 0.005990 0.958680 0.186467 -0.307426 0.022185
 0.883022 0.010460 0.978938 0.279256 -0.427845 0.028863
 0.821394 0.015970 0.997232 0.380868 -0.545076 0.034145
 0.750000 0.022360 1.016276 0.490314 -0.655257 0.038834
 0.671010 0.029345 1.038498 0.615677 -0.761927 0.040635
 0.586824 0.036360 1.062833 0.761407 -0.865047 0.039076
 0.500000 0.042670 1.088804 0.937296 -0.967603 0.032369
 0.413176 0.047445 1.114413 1.150647 -1.070719 0.021690
 0.328990 0.049850 1.139587 1.422610 -1.182065 0.004568
 0.250000 0.048850 1.147911 1.771430 -1.308325 -0.015548
 0.178606 0.044750 1.144379 2.222439 -1.465799 -0.030556
 0.116978 0.038405 1.137954 2.859395 -1.696827 -0.041660
 0.066987 0.030340 1.125485 3.863976 -2.087954 -0.050476
 0.030154 0.020930 1.087640 5.708723 -2.863493 -0.056743
 0.007596 0.010710 0.945091 9.983659 -4.773447 -0.060158
 0.000000 0.000000 0.000000 17.144979 -8.056392 -0.062063
 0.007596 -0.010710 -0.945091 9.983659 -4.773447 -0.060158
 0.030154 -0.020930 -1.087640 5.708723 -2.863493 -0.056743
 0.066987 -0.030340 -1.125485 3.863976 -2.087954 -0.050476
 0.116978 -0.038405 -1.137954 2.859395 -1.696827 -0.041660
 0.178606 -0.044750 -1.144379 2.222439 -1.465799 -0.030556
 0.250000 -0.048850 -1.147911 1.771430 -1.308325 -0.015548
 0.328990 -0.049850 -1.139587 1.422610 -1.182065 0.004568
 0.413176 -0.047445 -1.114413 1.150647 -1.070719 0.021690
 0.500000 -0.042670 -1.088804 0.937296 -0.967603 0.032369
 0.586824 -0.036360 -1.062833 0.761407 -0.865047 0.039076
 0.671010 -0.029345 -1.038498 0.615677 -0.761927 0.040635
 0.750000 -0.022360 -1.016276 0.490314 -0.655257 0.038834
 0.821394 -0.015970 -0.997232 0.380868 -0.545076 0.034145
 0.883022 -0.010460 -0.978938 0.279256 -0.427845 0.028863
 0.933013 -0.005990 -0.958680 0.186467 -0.307426 0.022185
 0.969846 -0.002700 -0.933471 0.096858 -0.181740 0.015520
 0.992404 -0.000680 -0.890691 0.026481 -0.069870 0.007287
 1.000000 0.000000 0.000000 0.000000 0.000000 0.001998

 NON-DIMENSIONAL VELOCITY, V=(C*cos(ALFA)+D*sin(ALFA))*(1-/+DELTA*sqrt(X-X^2))+DELTA*E)
 DCL/D(ALPHA)/2PI (THEORY)= 1.003996
 ANGLE,CL=0 (THEORY) = 0.000000 DEG

 69

 PROFILE CONSTANTS

 INTERMEDIATE VALUES
 UPPER SURFACE
 X C D E DY/DPHI
 0.000076 0.161276 16.982900 -7.981671 -0.062038
 0.000305 0.313757 16.522600 -7.769532 -0.061966
 0.000685 0.450819 15.831154 -7.451069 -0.061848
 0.001218 0.569054 14.992649 -7.065239 -0.061689
 0.001903 0.667997 14.085384 -6.648289 -0.061492
 0.002739 0.749135 13.169455 -6.228004 -0.061265
 0.003727 0.814891 12.284473 -5.822656 -0.061012
 0.004866 0.867893 11.452912 -5.442571 -0.060740
 0.006156 0.910580 10.685001 -5.092396 -0.060456
 0.011852 1.005922 8.501872 -4.103034 -0.059397
 0.017037 1.043992 7.345885 -3.584794 -0.058606
 0.023142 1.069452 6.436098 -3.181521 -0.057745

 LOWER SURFACE
 X C D E DY/DPHI
 0.000076 -0.161276 16.982900 -7.981671 -0.062038
 0.000305 -0.313757 16.522600 -7.769532 -0.061966
 0.000685 -0.450819 15.831154 -7.451069 -0.061848
 0.001218 -0.569054 14.992649 -7.065239 -0.061689
 0.001903 -0.667997 14.085384 -6.648289 -0.061492
 0.002739 -0.749135 13.169455 -6.228004 -0.061265
 0.003727 -0.814891 12.284473 -5.822656 -0.061012
 0.004866 -0.867893 11.452912 -5.442571 -0.060740
 0.006156 -0.910580 10.685001 -5.092396 -0.060456
 0.011852 -1.005922 8.501872 -4.103034 -0.059397
 0.017037 -1.043992 7.345885 -3.584794 -0.058606
 0.023142 -1.069452 6.436098 -3.181521 -0.057745

 70

 PRESSURE DISTRIBUTION
 SYMMETRICAL PROFILE

 ALFA CL DELTA sin(ALFA) LIFT SLOPE ALFA,CL=0
 4.090000 0.430129 0.003146 0.071323 0.959000 0.000000

 X POTNL VELOC VISC INCRM VISC VELOC POTNL P/Q VISC P/Q
 1.000000 0.000000 0.000000 0.000000 1.000000 1.000000
 0.992404 0.890311 -0.000269 0.890042 0.207346 0.207825
 0.969846 0.938002 -0.000877 0.937124 0.120153 0.121798
 0.933013 0.969537 -0.001532 0.968005 0.059997 0.062965
 0.883022 0.996363 -0.002161 0.994201 0.007261 0.011564
 0.821394 1.021857 -0.002763 1.019094 -0.044191 -0.038552
 0.750000 1.048659 -0.003318 1.045341 -0.099685 -0.092737
 0.671010 1.079765 -0.003835 1.075931 -0.165893 -0.157627
 0.586824 1.114433 -0.004305 1.110128 -0.241960 -0.232384
 0.500000 1.152882 -0.004731 1.148151 -0.329138 -0.318250
 0.413176 1.193643 -0.005110 1.188533 -0.424784 -0.412611
 0.328990 1.238150 -0.005460 1.232689 -0.533015 -0.519523
 0.250000 1.271331 -0.005780 1.265552 -0.616284 -0.601622
 0.178606 1.299976 -0.006129 1.293847 -0.689939 -0.674040
 0.116978 1.338998 -0.006662 1.332336 -0.792914 -0.775119
 0.066987 1.398210 -0.007654 1.390556 -0.954992 -0.933647
 0.030154 1.492035 -0.009812 1.482224 -1.226170 -1.196987
 0.007596 1.654753 -0.015487 1.639265 -1.738206 -1.687191
 0.000000 1.222837 -0.025387 1.197451 -0.495331 -0.433888
 0.007596 0.230616 0.015110 0.245726 0.946816 0.939619
 0.030154 0.677705 0.009398 0.687103 0.540716 0.527890
 0.066987 0.847027 0.007264 0.854291 0.282546 0.270187
 0.116978 0.931114 0.006319 0.937434 0.133026 0.121218
 0.178606 0.982953 0.005850 0.988803 0.033804 0.022270
 0.250000 1.018643 0.005575 1.024218 -0.037633 -0.049022
 0.328990 1.035219 0.005338 1.040558 -0.071679 -0.082760
 0.413176 1.029507 0.005071 1.034578 -0.059885 -0.070351
 0.500000 1.019180 0.004772 1.023952 -0.038728 -0.048479
 0.586824 1.005820 0.004421 1.010241 -0.011675 -0.020588
 0.671010 0.991941 0.004020 0.995961 0.016053 0.008062
 0.750000 0.978717 0.003565 0.982282 0.042113 0.035122
 0.821394 0.967527 0.003062 0.970590 0.063891 0.057956
 0.883022 0.956528 0.002504 0.959032 0.085055 0.080258
 0.933013 0.942939 0.001906 0.944844 0.110867 0.107269
 0.969846 0.924185 0.001268 0.925453 0.145882 0.143537
 0.992404 0.886534 0.000656 0.887190 0.214058 0.212894
 1.000000 0.000000 0.000000 0.000000 1.000000 1.000000

INTEGRATED CN= 0.425593
INTEGRATED CC= -0.030299
INTEGRATED CM(X)= 0.002425, CW ABT X=0.25
INTEGRATED CM(Y)= -0.001200, CW ABT Y=0

 71

 PRESSURE DISTRIBUTION

 ALFA CL DELTA sin(ALFA) LIFT SLOPE ALFA,CL=0
 4.090000 0.430129 0.003146 0.071323 0.959000 0.000000

 INTERMEDIATE VALUES

 UPPER SURFACE
 X POTNL VELOC VISC INCRM VISC VELOC POTNL P/Q VISC P/Q
 0.000076 1.372143 -0.025188 1.346954 -0.882775 -0.814286
 0.000305 1.491405 -0.024563 1.466842 -1.224289 -1.151624
 0.000685 1.578802 -0.023607 1.555195 -1.492615 -1.418630
 0.001218 1.636931 -0.022440 1.614491 -1.679543 -1.606580
 0.001903 1.670913 -0.021175 1.649737 -1.791949 -1.721633
 0.002739 1.686517 -0.019899 1.666619 -1.844340 -1.777618
 0.003727 1.688985 -0.018667 1.670318 -1.852671 -1.789962
 0.004866 1.682543 -0.017513 1.665029 -1.830950 -1.772323
 0.006156 1.670351 -0.016452 1.653899 -1.790074 -1.735383
 0.011852 1.609742 -0.013469 1.596273 -1.591269 -1.548088
 0.017037 1.565266 -0.011923 1.553343 -1.450057 -1.412873
 0.023142 1.525772 -0.010735 1.515037 -1.327982 -1.295338

 LOWER SURFACE
 X POTNL VELOC VISC INCRM VISC VELOC POTNL P/Q VISC P/Q
 0.000076 1.050412 -0.025123 1.025289 -0.103366 -0.051217
 0.000305 0.865489 -0.024437 0.841053 0.250928 0.292630
 0.000685 0.679460 -0.023425 0.656035 0.538334 0.569618
 0.001218 0.501721 -0.022211 0.479510 0.748276 0.770070
 0.001903 0.338321 -0.020906 0.317415 0.885539 0.899248
 0.002739 0.192062 -0.019597 0.172465 0.963112 0.970256
 0.003727 0.063355 -0.018340 0.045015 0.995986 0.997974
 0.004866 0.048822 0.017165 0.065988 0.997616 0.995646
 0.006156 0.146171 0.016087 0.162258 0.978634 0.973672
 0.011852 0.396978 0.013070 0.410048 0.842409 0.831861
 0.017037 0.517400 0.011514 0.528914 0.732298 0.720250
 0.023142 0.607684 0.010321 0.618006 0.630720 0.618069

 72

Appendix F: Modified XFOIL User Guide.

 73

Appendix G: Instruction for compiling modified XFOIL Code
This appendix is intended to provide basic instructions on how to obtain and

compile the source code for the modified version of XFOIL used for this project.

The original source code for XFOIL as released by Mark Drela can be obtained at

http://web.mit.edu/drela/Public/web/xfoil/. Version 6.96 was used for this project. In

order to compile the official release version of XFOIL, it is recommended to follow

the instructions that are contained in the README that is included with the *.tar files

containing the source code. Since this project was conducted on a Win32 based

PC, the following recommendations are provided based on personal experience

while trying to compile the source code in Windows XP

(1) Download and install Cygwin, available at http://www.cygwin.com/. Cygwin is a

Linux-like environment for Windows. It consists of two parts:

• A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing

substantial Linux API functionality.

• A collection of tools which provide Linux look and feel.

Cygwin allows native Linux applications to be run on Windows machines, if they are

rebuilt from their original source code using Cygwin. Specifically, the original

source code for XFOIL made use of X11 window tools that are not normally

available in Windows (Unix like plotting). The use of Cygwin was a fix to this.

Once running the Cygwin setup program, and under the “Select Packages Screen”,

complete the following actions prior to clicking the “Next” button:

-Under the “Devel” pull-down menu, select the “gcc-g77: Fortran Package” for
installation by click the “Skip” item on the left column. This action selects the
current version to include in the installation. This action will also select add-on
packages required for installation.

-Under the “Devel” pull-down menu, select the “make: The GNU version of the
‘make’ utility” for installation by click the “Skip” item on the left column.

 74

-Under the “X11” pull-down menu, select the “xorg-x11-base: Cygwin/X base”
package for installation, and the “xorg-x11-devel: Cygwin/X headers and import
libraries”. Associated add-ons will also be automatically selected.

(2) A basic guide on installation these items can be found at

http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/cygwin/.

Although not an official reference, the instructions and guidance provided here were

found to be useful.

(3) Download and intall MinGW. Instructions can be found by following the

downloand link on the http://www.mingw.org/ web page. When running the

installation program, ensure that the seletion box for ‘g77 compilier’ is checked

under “Select Components to Install:”, and continue with the installation process.

(5) Add the following lines to the file “c:\cygwin\etc\bash.bashrc”

 PATH=/cygdrive/c/mingw/bin:$PATH
 export PATH

These statements place the /Mingw/bin ahead of /Cygwin/bin in the path

statement for the Cygwin environment, ensuring that Mingw executables for

gcc.exe and g77.exe are used, rather than the Cygwin versions. This prevents

an error when XFOIL is run outside of the Cygwin environment, and eliminates the

error when cygwin1.dll is not present.

In order to test the above step, start Cywin and type which gcc at the Cygwin $

prompt. The response should be /cygdrive/c/mingw/bin/gcc. If the

response is /usr/bin/gcc, then the above steps were not completed properly.

(4) Download original source code from:
http://web.mit.edu/drela/Public/web/xfoil/xfoil6.96.zip

(5) Unzip xfoil6.96.zip to a working directory (i.e. C:\XFOIL\).

 75

(6) Replace the following files in the C:\XFOIL\SRC\ directory with the files

modified by the author as part of this project:

 blplot.f

 dplot.f

 gui.f

 modify.f

 plutil.f

 pntops.f

 polplt.f

 xfoil.f

 XFOIL.INC

 xgdes.f

 xgeom.f

 xmdes.f

 xoper.f

 xplots.f

 xqdes.f

 xtcam.f

(7) Place Makefile in the C:\XFOIL\SRC\ directory. Details of this file are

provided below.

Makefile

#***
Makefile for XFOIL V6.93 programs
H.Youngren 4/24/01
M.Drela
#***
Modified by Chris Peterson to generate modified version
of XFOIL that removes menus and plots, and executes from
command prompt.
#***

SHELL = sh
#BINDIR = $(HOME)/bin/
BINDIR = .

PROGS = xfoil
pplot pxplot

SRC = ../src
OSRC = ../osrc

XFOILOBJ = xfoil.o xpanel.o xoper.o xtcam.o xgdes.o xqdes.o xmdes.o \
xsolve.o xbl.o xblsys.o xpol.o xplots.o pntops.o xgeom.o xutils.o modify.o \
blplot.o polplt.o aread.o naca.o spline.o plutil.o iopol.o gui.o sort.o \
dplot.o profil.o

#PPLOTOBJ = pplot.o polplt.o sort.o iopol.o
#PXPLOTOBJ = pxplot.o plutil.o gui.o

XUTILOBJ = userio.o

FTNLIB =

 76

##--
OSOBJ = frplot0.o

Use this for individual TS-wave frequency plotting
OSOBJ = frplot.o ntcalc.o osmap.o getosfile.o

##--
PLTOBJ = ../plotlib/libPlt.a

Use this if you have a copy of the plotlib as a system library
PLTOBJ = -lPlt

The extra location arg here is for Linux which places X libs in /usr/X11R6
PLTLIB = -L/usr/X11R6/lib -lX11

###==
Default compilers and flags
FFLOPT used for xsolve.f
FC = g77
FFLAGS = -O
FFLOPT = -O
INSTALLCMD = install -s

CC = gcc
CFLAGS = -O -DUNDERSCORE

##--------------------------

Uncomment flags for desired machine...

##--------------------------
DEC Alpha with OSF and DEC f77/f90 compiler
#FC = f77
#FFLAGS = -fast -O4 -tune host
#FFLOPT = -fast -O4 -tune host
#FFLOPT = -fast -O5 -tune host -unroll 3
Debug flags
#FFLAGS = -O0 -g
#FFLOPT = -fast -O4 -tune host
##--------------------------
SGI setup
#FC = f77
#FFLAGS = -O2 -static
#FFLOPT = -O2 -static
##--------------------------
Uncomment for RS/6000
#FFLAGS = -O -qextname
#FFLOPT = -O -qextname
##--------------------------
Uncomment for HP-9000
#FFLAGS = -O +ppu
#FFLOPT = -O +ppu
#FTNLIB = -U77
##--------------------------
Absoft Linux f77
#FC = f77

 77

#FFLAGS = -O -f -s -W -B108 -N34
#FFLOPT = -O -f -s -W -B108 -N34
##--------------------------
f2c/gcc compiler driver
#FC = fort77
#FFLAGS = -O2 -fomit-frame-pointer
#FFLOPT = -O2 -fomit-frame-pointer
##--------------------------
GNU g77
#FC = g77
#FFLAGS = -O3 -fomit-frame-pointer
#FFLOPT = -O3 -fomit-frame-pointer
Debug flags (symbols, array bounds)
#FC = g77
#FFLAGS = -g -O0 -C
##--------------------------
Intel Fortran Compiler
#FC = ifort
#FFLAGS = -O
#FFLOPT = -O
#FTNLIB = -Vaxlib /usr/lib/C-ctype.o /usr/lib/C_name.o /usr/lib/ctype-info.o
#FTNLIB = -Vaxlib
#FTNLIB = -i_dynamic

##--------------------------
Double precision option
#FFLAGS = -O -r8
#FFLOPT = -O -r8
#PLTOBJ = ../plotlib/libPltDP.a

all: $(PROGS)

install:
 $(INSTALLCMD) $(PROGS) $(BINDIR)

clean:
 -/bin/rm $(PROGS)
 -/bin/rm $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PPLOTOBJ) $(PXPLOTOBJ)
-/bin/rm *.o

xfoil: $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ)
 $(FC) -o xfoil $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PLTOBJ) $(PLTLIB)
$(FTNLIB)

#pxplot: $(PXPLOTOBJ) $(XUTILOBJ)
$(FC) -o pxplot $(PXPLOTOBJ) $(XUTILOBJ) $(PLTOBJ) $(PLTLIB) $(FTNLIB)

#pplot: $(PPLOTOBJ) $(XUTILOBJ)
$(FC) -o pplot $(PPLOTOBJ) $(XUTILOBJ) $(PLTOBJ) $(PLTLIB) $(FTNLIB)

xfoil.o: $(SRC)/xfoil.f $(SRC)/XFOIL.INC
 $(FC) -c $(FFLAGS) $(SRC)/xfoil.f
xpanel.o: $(SRC)/xpanel.f $(SRC)/XFOIL.INC

 78

 $(FC) -c $(FFLOPT) $(SRC)/xpanel.f
xoper.o: $(SRC)/xoper.f $(SRC)/XFOIL.INC
 $(FC) -c $(FFLAGS) $(SRC)/xoper.f
xsolve.o: $(SRC)/xsolve.f $(SRC)/XFOIL.INC
 $(FC) -c $(FFLOPT) $(SRC)/xsolve.f
dplot.o: $(SRC)/dplot.f $(SRC)/XFOIL.INC
 $(FC) -c $(FFLOPT) $(SRC)/dplot.f
xtcam.o: $(SRC)/xtcam.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC
 $(FC) -c $(FFLAGS) $(SRC)/xtcam.f
xgdes.o: $(SRC)/xgdes.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC
 $(FC) -c $(FFLAGS) $(SRC)/xgdes.f
xqdes.o: $(SRC)/xqdes.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC
 $(FC) -c $(FFLAGS) $(SRC)/xqdes.f
xmdes.o: $(SRC)/xmdes.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC $(SRC)/CIRCLE.INC
 $(FC) -c $(FFLAGS) $(SRC)/xmdes.f
xbl.o: $(SRC)/xbl.f $(SRC)/XFOIL.INC $(SRC)/XBL.INC
 $(FC) -c $(FFLAGS) $(SRC)/xbl.f
xblsys.o: $(SRC)/xblsys.f $(SRC)/XBL.INC
 $(FC) -c $(FFLAGS) $(SRC)/xblsys.f
xplots.o: $(SRC)/xplots.f $(SRC)/XFOIL.INC
 $(FC) -c $(FFLAGS) $(SRC)/xplots.f
pntops.o: $(SRC)/pntops.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC
 $(FC) -c $(FFLAGS) $(SRC)/pntops.f
blplot.o: $(SRC)/blplot.f $(SRC)/XFOIL.INC
 $(FC) -c $(FFLAGS) $(SRC)/blplot.f
xpol.o: $(SRC)/xpol.f $(SRC)/XFOIL.INC
 $(FC) -c $(FFLAGS) $(SRC)/xpol.f
xgeom.o: $(SRC)/xgeom.f
 $(FC) -c $(FFLAGS) $(SRC)/xgeom.f
xutils.o: $(SRC)/xutils.f
 $(FC) -c $(FFLAGS) $(SRC)/xutils.f
modify.o: $(SRC)/modify.f
 $(FC) -c $(FFLAGS) $(SRC)/modify.f
aread.o: $(SRC)/aread.f
 $(FC) -c $(FFLAGS) $(SRC)/aread.f
naca.o: $(SRC)/naca.f
 $(FC) -c $(FFLAGS) $(SRC)/naca.f
plutil.o: $(SRC)/plutil.f
 $(FC) -c $(FFLAGS) $(SRC)/plutil.f
userio.o: $(SRC)/userio.f
 $(FC) -c $(FFLAGS) $(SRC)/userio.f
gui.o: $(SRC)/gui.f
 $(FC) -c $(FFLAGS) $(SRC)/gui.f
spline.o: $(SRC)/spline.f
 $(FC) -c $(FFLAGS) $(SRC)/spline.f
sort.o: $(SRC)/sort.f
 $(FC) -c $(FFLAGS) $(SRC)/sort.f
profil.o: $(SRC)/profil.f
 $(FC) -c $(FFLAGS) $(SRC)/profil.f

polplt.o: $(SRC)/polplt.f $(SRC)/PINDEX.INC
 $(FC) -c $(FFLAGS) $(SRC)/polplt.f
iopol.o: $(SRC)/iopol.f $(SRC)/PINDEX.INC
 $(FC) -c $(FFLAGS) $(SRC)/iopol.f

#pplot.o: $(SRC)/pplot.f $(SRC)/PPLOT.INC
$(FC) -c $(FFLAGS) $(SRC)/pplot.f

 79

#pxplot.o: $(SRC)/pxplot.f $(SRC)/PXPLOT.INC
$(FC) -c $(FFLAGS) $(SRC)/pxplot.f

frplot0.o: $(SRC)/frplot0.f
 $(FC) -c $(FFLAGS) $(SRC)/frplot0.f
frplot.o: $(SRC)/frplot.f
 $(FC) -c $(FFLAGS) $(SRC)/frplot.f
#ntcalc.o: $(SRC)/ntcalc.f
$(FC) -c $(FFLAGS) $(SRC)/ntcalc.f

#osmap.o: $(OSRC)/osmap.f
$(FC) -c $(FFLAGS) $(OSRC)/osmap.f

#getosfile.o: $(OSRC)/getosfile.c
$(CC) -c $(CFLAGS) $(OSRC)/getosfile.c

(8) Start Cygwin, and navigate to the location of the XFOIL source code, with

appropriate files replaced by typing “cd ../../cygdrive/c/xfoil/src” or to

the directory as appropriate.

(9) At the Cygwin prompt, type “make”. The modified executable used for the work

conducted in this thesis should compile. The xfoil.exe executable will be built

and located in the same directory above in step (8). xfoil.exe may now be

relocated as necessary and place in the appropriate directory for MATLAB

execution.

(10) Future modifications may be made to the source code files (*.f) in order to alter

the program as further desired. If the source code files are altered, repeat steps (8)

and (9) to generate a new executable file.

 80

Appendix H: MATLAB Files for Calculation of Minimum
Pressure Envelopes

XBucket.m

%Code by Chris Peterson.
%Code intended to produce minimum pressure envelopes using XFOIL to
%calculate minimum pressure for foil geometry. Code can either use NACA 4-
%or 5-digit airfoils built into XFOIL, or may read in properly formatted
%thickness and camber distributions from text files.

clc; clear all; close all;

foil_type = 'LOAD'; %Either 'LOAD', or 'NACA' for 4 or 5 digit

if foil_type == 'LOAD' %Filenames thickness & camber, and data file
 foil_name = 'foildata';
 load_mean = 'Brock08act.txt';
 load_thck = 'Brock66act.txt';
elseif foil_type == 'NACA'
 foil_name = 'FOUR'; %Or 'FIVE'
 fo_loc = 0.4; %0.X for 4-digt, or 0.05*k for 5-digit (k=1-5)
end

xdir = '.\xfoil\'; %Specify XFOIL.EXE executable location
panels = 175; %Sets number of panels if resetting in XFOIL
Alpha_lim = [-5 8]; %Angle of attack range
Alpha_delta = 0.1; %Angle of attack increment

foc_rng = [0.00 0.06]; %Camber ratio range (Must be <0.1 for 4-digit
NACA)
foc_step = 0.01; %Camber ratio increment

toc_rng = [0.02 0.2]; %Thicness ratio range
toc_step = 0.02; %Thickness ratio increment

visc_tog = 0; %1-yes(viscous), 0-no(Inviscid)
iter_lim = 500; %XFOIL viscous calc iteration limit
Re_no = 1e7; %Reynolds number for visc calcs

if visc_tog == 1 %Add visc functionality to XFOIL command line
 visc_cmd = ['OPER ITER ', num2str(iter_lim),' ',...
 'OPER VISC ', num2str(Re_no), ' '];
elseif visc_tog == 0
 visc_cmd = '';
end

%Determine alphas to calculate
A_rng = Alpha_lim(1):Alpha_delta:Alpha_lim(2);

%Start of main calculation loops
for fo_c = foc_rng(1):foc_step:foc_rng(2) %Calculate over range of f/c
 k = int8((fo_c+foc_step)/foc_step); %k is index for data array below

 81

 for to_c = toc_rng(1):toc_step:toc_rng(2) %Calculate over range of t/c
 j = int8((to_c-toc_rng(1)+toc_step)/toc_step);

 %IF below determines if XFOIL database will be used, and creates
 %foil if tabulated data is to be read in
 if strcmp(foil_type, 'NACA')
 if strcmp(foil_name, 'FOUR')
 name = get4_nm(fo_loc, fo_c, to_c);
 elseif strcmp(foil_name, 'FIVE')
 name = get5_nm(fo_loc, to_c);
 end
 elseif strcmp(foil_type, 'LOAD') %Makes foil if req'd
 makefoil(to_c, fo_c, load_mean, load_thck, foil_name);
 name = foil_name;
 end

 %CMD generates call to run the XFOIL executable to calc CPmin.
 cmd = [xdir, 'xfoil.exe ',...
 'NORM ',...
 foil_type, ' ', name, ' ',...
 'GDES TSET ', num2str(to_c), ' ',num2str(fo_c), ' ',...
 'GDES X ',...
 visc_cmd, ...
 'OPER ALFL ', num2str(Alpha_lim(1)),' ',...
 num2str(Alpha_delta),' ', num2str(Alpha_lim(2)), ' '];

 system(cmd); %Calls XFOIL
 %Reads in -Cpmin, and x-location of -Cpmin
 fid = fopen('CPMINARRAY.txt');
 clear datain;
 if visc_tog == 0;
 datain = textscan(fid, '%f64 %f64', 'headerlines', 1);
 elseif visc_tog == 1;
 datain = textscan(fid, '%f64 %f64 %f64 %f64', ...
 'headerlines', 1);
 end
 fclose(fid);
 if visc_tog == 1;
 cpmni(j,:,k) = datain{1,1};
 xcpmni(j,:,k) = datain{1,2};
 cpmnv(j,:,k) = datain{1,3};
 xcpmnv(j,:,k) = datain{1,4};
 elseif visc_tog == 0
 cpmni(j,:,k) = datain{1,1}; %Data array for minimum Cp
 xcpmini(j,:,k) = datain{1,2}; %Data array for location of CPmin
 end
 end

%Generates Bucket diagrams, new plot for each Fo/C
 figure();
 hold on; grid on;
 cmap = colormap(hsv(toc_rng(2)/toc_step+1)); %Generates color distibution
 set(gca,'ColorOrder',cmap);
 plot(-cpmni(:,:,k), A_rng(1:length(cpmni))); %Plots Alpha vs. -Cpmin
 xlim([0 3]);
 if fo_c > 0

 82

 ylim(Alpha_lim); %Set plot X/Y limits
 else
 ylim([0 8]);
 end
 xlabel('-CP_m_i_n'); ylabel('Angle of Attack (\alpha)');
 if foil_type == 'NACA'
 title_name = [foil_type, ' ', foil_name];
 elseif foil_type == 'LOAD'
 title_name = ['Meanline: ', load_mean, '. Thickness: ', load_thck];
 else
 title_name = 'UNKNOWN TYPE';
 end
 title({['INVISCID Brockett Diagram',10, title_name, 10,...
 ' Fo/c = ', num2str(fo_c), ' ', '\Delta\alpha = ',
num2str(Alpha_delta)]});
 tau = toc_rng(1):toc_step:toc_rng(2); %Used for legend
 leg_st = cell(1,length(tau)); %Initializes cells
 for i = 1:length(tau); %Set vales to cells
 leg_st(i) = {num2str(tau(i))};
 end
 legend(leg_st, 'Location', 'SouthEast')

 if visc_tog == 1
 figure();
 hold on; grid on;
 cmap = colormap(hsv(toc_rng(2)/toc_step+1));
 %Generates color distibution
 set(gca,'ColorOrder',cmap);
 plot(-cpmnv(:,:,k), A_rng(1:length(cpmnv)));
 %Plots Alpha vs. -Cpmin
 xlim([0 3]);
 ylim(Alpha_lim); %Set plot X/Y limits
 xlabel('-CP_m_i_n'); ylabel('Angle of Attack (\alpha)');
 if foil_type == 'NACA'
 title_name = [foil_type, ' ', foil_name];
 elseif foil_type == 'LOAD'
 title_name = ['Meanline: ', load_mean, '. Thickness: ',
load_thck];
 else
 title_name = 'UNKNOWN TYPE';
 end
 title({['VISCOUS Brockett Diagram',10, title_name,10,...
 ' Fo/c = ', num2str(fo_c), ' \Delta\alpha = ',
num2str(Alpha_delta)]});
 tau = toc_rng(1):toc_step:toc_rng(2); %Used for legend
 leg_st = cell(1,length(tau)); %Initializes cells
 for i = 1:length(tau); %Set vales to cells
 leg_st(i) = {num2str(tau(i))};
 end
 legend(leg_st, 'Location', 'SouthEast')
 end
end

 83

makefoil.m

%Code by Chris Peterson. Code will read in specified camber and thickness
% distributions and generate foil geometry file for XFOIL. Thickness and
% camber are scaled to t_set and f_set.
% Coordinates start at TE, go forward CCW along upper surfact to LE,
% and back to TE along lower surface.

function [] = makefoil(t_set, f_set, mean_type, thick_type, save_as)

% clc; clear all; close all;
% t_set = 0.1;
% f_set = 0.08;
% mean_type = 'NACAa=08(Brockett).txt';
% thick_type = 'NACA66(Brockett).txt';
% save_as = 'brockett';

make_plot = 'no'; %Generate plot toggle ('yes' or 'no')
N_parab_def = 35; %Number of points to make nose parabola. Fails at
numbers < ~20
N_parab_eval = 11; %Number of points to include at the nose in data
export;
N_surf_pts = 80; %Number of points along body to TE (not including LE)
 %N_parab_pts + N_surf_pts must be < 150
fract = 1-2/N_parab_eval; %Fraction of parabola to use from LE to
0.005.
 %Max parabola point must be less than 0.005
 %to prevent sharp cornder at 0.005.
conc_fact = 2; %Power for exponential disribution at LE. This
 %concentrates point near tip.

%Get meanline and dy/dx distributions from mean line data base
[x_f fc_o dydx_o] = getmeanline(mean_type);
[x_t tc_o RLE_o] = getthickdist(thick_type);

%Scale appropriately
t_set = t_set/2; %uses 1/2 thickness
if max(fc_o) ~= 0
 f_scale = f_set/max(fc_o);
elseif max(fc_o) == 0
 f_scale = 0;
end
f_c = fc_o * f_scale;
dydx = dydx_o * f_scale;
t_scale = t_set/max(tc_o);
t_c = tc_o * t_scale;
RLE = RLE_o * (t_scale)^2;

%Find points along RLE nose parabola
x_RLE = fract*0.005*(0:1/(N_parab_def-1):1).^conc_fact;
t_RLE = sqrt(2*RLE*(x_RLE));

%Spline parabola and tabulated data for thickness function
x_locs = [x_RLE x_t(2:end)]; %New combined x/c values

 84

t_fnct = csape(x_locs, [1e10 t_RLE t_c(2:end) 1],[1 0]); %1e8 sets init
slope = ~inf
%Make x locations for generating data file
 %Cosine spacing from 0.005 to TE
x_cos_sp= 0.005 + 0.5*0.995*(1-cos(0:pi/(N_surf_pts-1):pi));
 %Exponential spacing for nose
x_eval_LE = fract*0.005*(0:1/(N_parab_eval-1):1).^conc_fact;
t_eval_LE = sqrt(2*RLE*(x_eval_LE));
x_eval_mb = [x_cos_sp]; %Establishes eval points
t_eval_mb = fnval(t_fnct, x_eval_mb); %Evaluates spline at eval points
x_eval = [x_eval_LE x_eval_mb];
t_eval = [t_eval_LE t_eval_mb];

%Spline tabulated data for camber at same x/c locations as thickness
f_fnct = csape(x_f, f_c);
f_eval = fnval(f_fnct, x_eval);
dydx_eval = fnval(fnder(f_fnct), x_eval);

%Plotting for unrotated parameters
if strcmp(make_plot,'yes')
 figure();
 hold on;
 axis equal; %Set X:Y to unity
 title('Camber, Thickness, and LE Graphical Display')
 xlabel('X/C');
 xlim([-0.01 0.25]); %Set Initial Zoom
 %Plot thickness
 fnplt(t_fnct, 'y'); fnplt(f_fnct, 'g')
 plot(x_t, t_c, 'co'); plot(x_f, f_c, 'ro')
 plot(x_RLE, t_RLE, 'k.');
 %Plot RLE Circle and parabola for viewing on plot
 plot(RLE - RLE*cos(0:pi/100:pi), RLE*(sin(0:pi/100:pi)), 'b:');
 plot((0:1/10000:0.2), sqrt(2*RLE*(0:1/10000:0.2)), 'r:');
 %Plot camber

 legend('Splined Thickness', 'Splined Camber',...
 'Tabulated Thickness (Scaled)', 'Tabulated Camber (Scaled)',...
 'Calcuated Parabola', 'Leading Edge Radius', 'LE Parabola',...
 'Location', 'southeast')
end

%Calculate upper and lower surface ordinates
x_u = x_eval - t_eval.*sin(atan(dydx_eval));
y_u = f_eval + t_eval.*cos(atan(dydx_eval));
x_l = x_eval + t_eval.*sin(atan(dydx_eval));
y_l = f_eval - t_eval.*cos(atan(dydx_eval));

%Solve for most forward point on foil
[x_fwd, min_i] = min(x_u);
y_fwd = y_u(min_i);

%New plot for actual upper and lower surfaces
if strcmp(make_plot,'yes')
 figure();

 85

 hold on;
 axis equal; %Set X:Y to unity
 xlim([0 1]); %Set Initial Zoom
 plot(x_u, y_u, 'b-', x_u, y_u, 'r.')
 plot(x_l, y_l, 'b-', x_l, y_l, 'r.');
 plot(x_eval, f_eval, 'g-', x_eval, f_eval, 'r.')
 plot(x_fwd,y_fwd, 'kp')
end

%Combine coordinates into a single array of points from TE along upper
%surface around LE back to TE along lower surface
x_comb = [fliplr(x_u) x_l];
y_comb = [fliplr(y_u) y_l];

%Rotate and scale such that max forward point is at 0,0, and TE is at 0,1.
%Assumes TE is already at 0,0 (Uses method in Brockett Report)
shift_ang = atan(y_fwd/(1-x_fwd));
%Scaled chord length back to 1 (accounts for portion forward of 0)
x_scaled = (x_comb-x_fwd)./(1-x_fwd);
y_scaled = (y_comb-y_fwd)./(1-x_fwd);
%Rotate so that most forward point is at 0,0
x_rot = (x_scaled.*cos(shift_ang) - y_scaled.*sin(shift_ang))/...
 sqrt(1+(y_fwd/(1-x_fwd))^2);
y_rot = (y_scaled.*cos(shift_ang) + x_scaled.*sin(shift_ang))/...
 sqrt(1+(y_fwd/(1-x_fwd))^2);

%New plot for final upper and lower surfaces
if strcmp(make_plot,'yes')
 figure();
 hold on;
 title('Final Points exported to Data File.');
 axis equal; %Set X:Y to unity
 xlim([0 1]); %Set Initial Zoom
 plot(x_rot, y_rot, x_rot, y_rot, 'r.');
 legend('Connect the dots', 'Actual data points');
end

%Write to text file for use in XFOIL.
cmd = ['del ', save_as]; %save_as is file name to be written to
system(cmd); %Delets previous file
fid = fopen(save_as, 'w');
for i = 1:length(x_rot)
 fprintf(fid, '%10.8f %10.8f\n', x_rot(i), y_rot(i));
end
fclose(fid);

 86

getmeanline.m

% Code by Chris Peterson
% Code developed to read meanline information from data file 'filename'.
% Data will be read in from file, and returned to function call. Data
% return is vectors containing x-locations, camber distribution, and
% camber line slope values. Function checks for 999 value specifying
% less data points than standard input format.

function [x_loc f_c dy_dx] = getmeanline(filename)

cd('./Meanline');

input = dlmread(filename, '\t', 4, 0);
M = input';
x_loc_in= M(1,:)/100;
f_c_in = M(2,:)/100;
dy_dx_in= M(3,:);

for i=1:length(x_loc_in)
 if x_loc_in(i) == 9.99 %Checks to see if formatted with less points
 x_loc = x_loc_in(1:i-1);
 f_c = f_c_in(1:i-1);
 dy_dx = dy_dx_in(1:i-1);
 cd ..;
 return
 else
 x_loc = x_loc_in;
 f_c = f_c_in;
 dy_dx = dy_dx_in;
 end
end

cd ..

 87

getthickdist.m

% Code by Chris Peterson
% Code developed to read thickness information from data file 'filename'.
% Data will be read in from file, and returned to function call. Data
% return is vectors containing x-locations, thickness distribution, and
% value of leading edge radius. Function checks for 999 value specifying
% less data points than standard input format.

function [x_loc t_c RLE] = getthickdist(filename)

cd('./Thickness');

input = dlmread(filename, '\t', [4 0 29 2]);
M = input';
x_loc_in= M(1,:)/100;
t_c_in = M(2,:)/100;
fid = fopen(filename);
RLE = textscan(fid, '%s', 'headerlines', 29);
fclose all;
RLE = str2num(RLE{1}{7})/100;

for i=1:length(x_loc_in)
 if x_loc_in(i) == 9.99 %Checks to see if formatted with less points
 x_loc = x_loc_in(1:i-1);
 t_c = t_c_in(1:i-1);
 cd ..;
 return
 else
 x_loc = x_loc_in;
 t_c = t_c_in;
 end
end

cd ..;

 88

get4_nm

%Code by Chris Peterson. Code generates a 4 digit string based on location
%of max camber, camber and thickness to generate NACA 4-digit designation.

function [name] = get4_nm(loc, fo_c, to_c)

if fo_c == 0
 no1 = '0';
 no2 = '0';
else
 no1 = num2str(int8(100*fo_c));
 no2 = num2str(int8(10*loc));
end

if to_c < 0.1
 no34 = strcat('0', num2str(int8(100*to_c)));
else
 no34 = num2str(int8(100*to_c));
end

name = strcat(no1, no2, no34);

get5_nm.m

%Code by Chris Peterson. Code generates a 5 digit string based on location
%of max camber, camber and thickness to generate NACA 4-digit designation.

function [name] = get5_nm(loc, to_c)

no1 = '2'; %Only designs implemented in XFOIL are 210, 220,..., 250

if loc > 0.25 | loc < 0.025 %Will round to nearest 10%
 error('Improper location for Max Camber.')
else
 no23 = num2str(10*int8(2*10*loc));
end

if to_c < 0.1
 no45 = strcat('0', num2str(int8(100*to_c)));
else
 no45 = num2str(int8(100*to_c));
end

name = strcat(no1, no23, no45);

 89

Appendix I: Meanline and Camber Data File Format
Meanline and thickness distributions for various NACA foils are available at the

Public Domain Aeronautical Software website (http://www.pdas.com/avd.htm). The

formats of these files were used as input for the meanline and thickness

distributions, and the MATAB code assumes similar formatting for other tabulated

offsets. Examples of meanline and thickness data files are shown below for the

NACA a=0.3 Meanline, and the NACA 66-008 thickness distributions:

NACAa=0.8.txt
NACA Mean Line a=0.3
(Stations and ordinates given
in per cent of airfoil chord)
x y dy/dx
0 0 0
0.5 0.3892 0.6554
0.75 0.5463 0.6052
1.25 0.8317 0.5416
2.5 1.4478 0.454
5 2.4575 0.3634
7.5 3.2925 0.3078
10 4.008 0.2662
15 5.1721 0.2025
20 6.052 0.1507
25 6.6853 0.1028
30 7.0721 0.0483
35 7.1754 -0.002
40 7.0738 -0.0371
45 6.8162 -0.0649
50 6.4333 -0.0875
55 5.9488 -0.1057
60 5.3828 -0.1201
65 4.7531 -0.1312
70 4.0763 -0.139
75 3.3683 -0.1436
80 2.6453 -0.145
85 1.9243 -0.1428
90 1.2244 -0.1364
95 0.5698 -0.1243
100 0 0

NACA66-008.txt
NACA 66-008
(Stations and ordinates given
in per cent of airfoil chord)
x y dy/dx
0 0 0
0.5 0.6111 0.5674
0.75 0.7341 0.4353
1.25 0.9151 0.306
2.5 1.2183 0.2079
5 1.6716 0.1605
7.5 2.0321 0.1303
10 2.3336 0.1123
15 2.8245 0.0857
20 3.2003 0.0658
25 3.4904 0.0505
30 3.7091 0.0372
35 3.8642 0.0253
40 3.9603 0.0131
45 3.9984 0.0016
50 3.9777 -0.0102
55 3.8945 -0.0236
60 3.7378 -0.0408
65 3.4659 -0.0693
70 3.0593 -0.0915
75 2.5713 -0.1039
80 2.0256 -0.1137
85 1.445 -0.1169
90 0.8674 -0.1131
95 0.3378 -0.0952
100 0 -0.0038
L.E. radius = 0.389 percent chord

 90

All values are specified as a percentage of chord length. Note that for meanline

data, ‘y’ values represent camber offsets, and dy/dx is camberline slope. For

thickness distribution, ‘y’ represents thickness values perpendicular to the meanline,

and dy/dx is thickness slope. In addition, leading edge radius must be specified.

If desired, meanline and thickness for arbitrary foil shapes may be specified using

the above format, or alternatively, if offsets are available, but not at the locations

specified above, the following formats may also be used. These meanline and

thickness offsets were taken from reference [4]

Brock08act.txt
NACA Mean Line a=0.8(modified)
(Stations and ordinates given
in per cent of airfoil chord)
x y dy/dx
0 0 0.71485
0.7596 0.6006 0.66001
3.0154 1.8381 0.47712
6.6987 3.3684 0.36751
11.6978 4.9874 0.28681
17.8606 6.5407 0.22096
25 7.9051 0.1635
32.899 8.9831 0.11071
41.3176 9.6994 0.06001
50 10 0.00914
58.6824 9.8503 -0.04448
67.101 9.2306 -0.10483
75 8.1212 -0.18132
82.1394 6.3884 -0.31892
88.3022 4.2227 -0.37243
93.3013 2.3423 -0.37425
96.9846 0.9982 -0.35148
99.2404 0.2365 -0.32028
100 0 -0.30025
999 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Brock66act.txt
NACA 66 (Mod)-From Brockett
(Stations and ordinates given
in per cent of airfoil chord)
x y dydx
0 0 0
0.7596 0.817 0
3.0154 1.608 0
6.6987 2.388 0
11.6978 3.135 0
17.8606 3.807 0
25 4.363 0
32.899 4.76 0
41.3176 4.972 0
50 4.962 0
58.6824 4.712 0
67.101 4.247 0
75 3.612 0
82.1394 2.872 0
88.3022 2.108 0
93.3013 1.402 0
96.9846 0.83 0
99.2404 0.462 0
100 0.333 0
999 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
L.E. radius = .448 percent chord

The file formats for Brock08act.txt and Brock66act.txt utilize the same number of rows
and columns as the previous formats (NACAa=0.8.txt and NACA66-008.txt). The only
difference is that when there are less than 26 offset locations, the number 999 must be
put after the last data point. This instructs the code to stop reading in data points. All
other values after the last offset location must be filled in with zeros to maintain proper
file format and size. Also, dy/dx values for thickness distributions are not required, and
may be filled in with zeros if unknown.

